
API revision: 2.1

UFR Series NFC reader’s API reference

This document applies to Digital Logic’s uFR Series readers only.

For more information, please visit http://www.d-logic.net/nfc-rfid-reader-sdk/

The scope of this document is to give a better insight and provide easy start with uFR Series NFC
readers.

uFR Series readers communicate with host via built in FTDI’s USB to Serial interface chip.

If you have uFR Series reader with RS232 interface, please refer to “Communication protocol -
uFR Series” document at our download section.

We provide dynamic libraries for all major OS: Win x86, Win X86_64, Linux x86, Linux x86_64,
Linux ARM (and ARM HF with hardware float) and Mac OS X.

Our dynamic libraries rely on FTDI D2XX direct drivers. Most of them are already built in at today’s
modern OS. However, we always suggest to perform clean driver installation procedure by
downloading and installing drivers from FTDI’s download webpage.

Android platform is supported through FTDI’s Java D2XX driver. Since this approach introduces
new Java class, it shall be a scope of separate document.

Important update:
From library version 4.01 and up, it is possible to establish communication with reader without
using FTDI’s D2XX driver by calling ReaderOpenEx function. Library can talk to reader via COM
port (physical or virtual) without implementing FTDI’s calls. However, this approach is not fast as
with use of D2XX drivers but gives much more flexibility to users who had to use COM protocol
only, now they can use whole API set of functions via COM port.

Library naming convention

Dynamic libraries names are built upon following convention:
− Library always have “uFCoder” in its name as mandatory
− Prefix “lib” according to platform demands
− Suffix with architecture description
− Extension according to platform demands

Our standard library pack contains following libraries:

Digital Logic, www.d-logic.net Page 1

http://www.d-logic.net/nfc-rfid-reader-sdk/
http://dld.is.d-logic.net/index.php/documentation-download/latest-docs-ufr/communication-protocol-is21-vcom-3-5-enpdf?format=raw
http://dld.is.d-logic.net/index.php/documentation-download/latest-docs-ufr/communication-protocol-is21-vcom-3-5-enpdf?format=raw
http://www.d-logic.net/

API revision: 2.1

− libuFCoder-arm.so – for Linux on ARM platforms with software float
− libuFCoder-armhf.so - for Linux on ARM platforms with hardware float
− libuFCoder-x86.so – for Linux on Intel 32 bit platforms
− libuFCoder-x86_64.so - for Linux on Intel 64 bit platforms
− uFCoder-x86.dll – for Windows 32 bit
− uFCoder-x86_64.dll – for Windows 64 bit
− libuFCoder.dylib – for all OS X Intel based versions

Update policy: we release updated firmware and libraries frequently, with minor & major
updates, bug-fixes, new features etc. All libraries mentioned above are affected with each
update. Updates are absolutely free and can be obtained from our download page at “Libraries”
section, while firmware updates are available at “Firmware” section by using software tool
specially designed for that purpose. Library update package always have the following directory
structure:
− “include” - contains “uFCoder.h” header file
− “linux” – contains directories “arm”, “armhf”, “x86” with appropriate libraries
− “osx” – contains library for OSX
− “windows” – contains libraries for Windows
and appropriate README file with short description of current revision.

Some considerations regarding platform specifics
Because FTDI driver is mandatory, proper installation method must be followed. See appendix for
FTDI troubleshooting for details.

Reader’s firmware and library functions relation
When you call library function, in most cases you are issuing protocol command to reader
firmware. Library functions are usually wrapped firmware commands. This approach is very
convenient for rapid application development and as time saving feature. Particularly, library
function does the following:
− Check if all function parameters are proper
− Send corresponding firmware command to reader with parameters given
− Parses reader’s response as “out” parameters and function result

There are exceptions of this rule for certain type of functions. For firmware functions, please refer
to “Communication protocol - uFR Series” document at our download section.

Digital Logic, www.d-logic.net Page 2

http://dld.is.d-logic.net/index.php/documentation-download/latest-docs-ufr/communication-protocol-is21-vcom-3-5-enpdf?format=raw
http://www.d-logic.net/

API revision: 2.1

Multi reader support
There can be many uFR Series readers connected to a single host. Natively, all library functions
are intended for use with “single reader” configuration.
All “single reader” functions have corresponding “multi reader” function. Multi reader functions
differs from the “single” functions by following:
Multi-function name always have suffix “M” at the end of function name
First parameter of Multi-function is always “Handle”. For example,
SomeFunction(void) => SomeFunctionM(Handle)
OtherFunction(par1, par2) => OtherFunctionM(Handle, par1, par2)

More about Multi-function usage can be found in the Handling with multiple readers.

Function syntax and data types in this document
By default, all functions are shown as their prototypes in C language.
All data types refers C types, except new defined “c_string” data type which representing null
terminated char array (also known as “C-String”). Array is always one byte longer (for null
character) then string. “c_string” is defined as

“typedef const char * c_string”.

For quick reference, always consult latest header file “uFCoder.h” at library package. Direct link to
“uFCoder.h” can be found on the GIT repository:
https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-lib/blob/master/include/uFCoder.h

Error codes
All functions always have return result with corresponding status code. Please refer to table
ERR_CODES in Appendix: ERROR CODES (DL_STATUS result).
In general you should always get function result = 0x00 if function is finished properly. One
exception from this rule is if you get “0x08” – “NO_CARD” result. In a matter of fact, this is not an
error, function is executed properly but there is no card present at readers RF field.
All other results indicates that some error occurred.

Digital Logic, www.d-logic.net Page 3

https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-lib/blob/master/include/uFCoder.h
http://www.d-logic.net/

API revision: 2.1

Digital Logic, www.d-logic.net Page 4

http://www.d-logic.net/

API revision: 2.1

API set of functions
API set of functions is divided in three categories:
1. Common set
2. Advance set
3. Access control set

Common set of functions is shared among all uFR Series devices.
Advance set contains additional functions for use with uFR Advance and BASE HD uFR
devices. It has additional functions for use of Real Time Clock (RTC) and user configurable
EEPROM functions.
Access control set contains additional functions for use with BASE HD uFR devices. It has
additional functions for use of I/O features like control of door lock, relay contacts and various
inputs.
In further reading functions will be marked if they belong to Advance or Access control set.

Library functions
Functions are divided into several groups, based on purpose.

Reader and library related functions
Functions related to reader itself, to obtain some info or set certain device parameters.

Card/tag related commands
Functions used for card (or tag) data manipulation, such as obtaining some info, reading or
writing data into card. Can be divided into several groups:

General purpose card related commands

Functions for getting common card data, not specific to card type.

Mifare Classic specific commands

Functions specific to Mifare Classic ® family of cards (Classic 1K and 4K). All functions
are dedicated for use with Mifare Classic ® cards. However, some functions can be
used with other card types, mostly in cases of direct addressing scheme and those
functions will be highlighted in further text.
a) Block manipulation commands – direct and indirect addressing

Functions for manipulating data in blocks of 16 byte according to Mifare Classic ®
memory structure organization.

Digital Logic, www.d-logic.net Page 5

http://www.d-logic.net/

API revision: 2.1

b) Value Block manipulation commands – direct and indirect addressing
Functions for manipulating value blocks byte according to Mifare Classic ® memory
structure organization.

c) Linear data manipulation commands
Functions for manipulating data of Mifare Classic ® memory structure as a Linear
data space.

NFC – NDEF related commands

Functions for reading and writing common NDEF messages and records into various
NFC tags. Currently, only NFC Type 2 Tags are supported, while support for other NFC
Tag types will be added in future upgrades.

NTAG related commands

Functions specific to NTAG ® family chips such as NTAG 203, 210, 212, 213, 215, 216.
Due to different memory size of various NTAG chips, we implemented functions for
handling NTAG chips as generic NFC Type 2 Tag.

UID ASCII mirror support
NTAG 21x family offers specific feature named “UID ASCII mirror function” which is
supported by the uFR API using the function write_ndef_record_mirroring(). For
details about “UID ASCII mirror function” refer to
http://www.nxp.com/docs/en/data-sheet/NTAG213_215_216.pdf (in Rev. 3.2 from 2.
June 2015, page 21)
and http://www.nxp.com/docs/en/data-sheet/NTAG210_212.pdf (in Rev. 3.0 from 14.
March 2013, page 16).

NFC counter mirror support
NTAG 213, 215 and 216 devices offers specific feature named “NFC counter mirror
function” which is supported by the uFR API using the function
write_ndef_record_mirroring(). For details about “NFC counter mirror function”
refer to a document
http://www.nxp.com/docs/en/data-sheet/NTAG213_215_216.pdf (in Rev. 3.2 from 2.
June 2015, page 23).

UID and NFC counter mirror support

NTAG 213, 215 and 216 devices offers specific feature named “UID and NFC counter
mirror function” which is supported by the uFR API using the function
write_ndef_record_mirroring(). For details about “NFC counter mirror function”
refer to a document http://www.nxp.com/docs/en/data-sheet/NTAG213_215_216.pdf (in
Rev. 3.2 from 2. June 2015, page 26).

Digital Logic, www.d-logic.net Page 6

https://www.nxp.com/docs/en/data-sheet/NTAG213_215_216.pdf
https://www.nxp.com/docs/en/data-sheet/NTAG210_212.pdf
https://www.nxp.com/docs/en/data-sheet/NTAG213_215_216.pdf
https://www.nxp.com/docs/en/data-sheet/NTAG213_215_216.pdf
http://www.d-logic.net/

API revision: 2.1

Mifare DESFire specific commands

Functions specific to Mifare DESFire® cards. All uFR Series readers support DESfire
set of commands in AES encryption mode according to manufacturer's
recommendations. Currently, only Standard Data Files are supported, while other file
types shall be supported in future updates.
All readers have hardware built-in AES128 encryption mechanism. That feature
provides fast and reliable results with DESFire cards without compromising security
keys. Since DESFire EV1/EV2 cards comes in DES mode as factory default setting (due
to backward compatibility with older DESfire cards), cards must be turned to AES mode
first. There is library built in function for that purpose.

Authentication and password verification protection
Mifare Classic ® family of cards uses authentication mechanism based on 6 bytes keys,
which will be explained later in more detail.
NTAG ® 21x family chips and MIFARE Ultralight EV1 uses password verification
protection based on PWD and PACK pairs which length is 6 bytes in total. PWD is 4
bytes in length and PACK is contained in 2 bytes. uFR API use this 6 bytes PWD/PACK
pair (first goes 4 bytes of the PWD following by the 2 bytes of the PACK) to form
PWD/PACK key which is used for password verification with those chip families in the
similar manner as the authentication mechanism based on 6 bytes keys.
Selection of the authentication and password verification mechanisms, in the data
manipulation functions, is based on the value of the auth_mode parameter.

For details about “Password verification protection” refer to following documents:
http://www.nxp.com/docs/en/data-sheet/NTAG213_215_216.pdf (in Rev. 3.2 from 2.
June 2015, page 30), http://www.nxp.com/docs/en/data-sheet/NTAG210_212.pdf (in
Rev. 3.0 from 14. March 2013, page 19) and
https://www.nxp.com/docs/en/data-sheet/MF0ULX1.pdf (in Rev. 3.2 from 23. Nov 2017,
page 16).

Specific firmware features

There are few firmware features which are specific to uFR Series readers.

Tag Emulation mode
In this mode, reader acts as a Tag. In that mode, not all library functions are available. Reader
must be explicitly turned in or out of Tag Emulation mode.
In further reading this topic will be covered in more details.

Digital Logic, www.d-logic.net Page 7

http://www.nxp.com/docs/en/data-sheet/NTAG213_215_216.pdf
http://www.nxp.com/docs/en/data-sheet/NTAG210_212.pdf
https://www.nxp.com/docs/en/data-sheet/MF0ULX1.pdf
http://www.d-logic.net/

API revision: 2.1

Combined mode
In combined mode, reader is switching from reader mode to Tag Emulation mode and vice verse
few times in seconds. Reader must be explicitly turned in or out of Combined mode.
In further reading this topic will be covered in more details.

Asynchronous UID sending
This feature is turned off by default.
IF turned on, it will send card UID as a row of characters on COM port at defined speed using
following format:
[Prefix byte] UID_chars [Suffix byte]

Where Prefix byte is optional and Suffix byte is mandatory.
In further reading this topic will be covered in more details.

Sleep and Auto Sleep feature
Sleep feature is turned off by default. If turned on, it will put reader into special low power
consumption mode to preserve power. In this mode, reader will respond only on function to “wake
up”: turn sleep off.
Autosleep feature is different than previous in one major point: it will put reader into sleep after a
predefined amount of time and will respond to function calls. Time can be adjusted with dedicated
API function.
In further reading this topic will be covered in more details.

Card UID remarks

uFR Series readers support Card Unique IDentifier (Card UID) with various byte length according
to defined standards.
4 byte IDs: Non-unique IDs (NUID) are 4 byte long and as the name says, they are Non-Unique,
so there is always possibility of existing two or more cards with the same ID (NUID).
7 byte IDs: Card UID are currently 7 byte long with never card types and still provide number
range which large enough to provide uniqueness of IDs. These type of UIDs are fully supported
at uFR series devices.

Digital Logic, www.d-logic.net Page 8

http://www.d-logic.net/

API revision: 2.1

10 byte IDs: currently not in use but they are defined by standard for some future use. UFR
Series devices are capable of handling this type of IDs when they become available.

Mifare Classic chips overview

One of the most popular and worldwide used contactless card type is NXP's Mifare Classic card,
which comes in two memory map layouts: as 1K and 4K card.
Most of mentioned cards comes with 4 byte NUID. Cards with newer production date can be
found with 7 byte UID too, especially MF1S70 type.
Mifare Classic 1K (MF1S50) and its derivatives has EEPROM with 1024 bytes storage, where
752 bytes are available for user data.

Digital Logic, www.d-logic.net Page 9

http://www.d-logic.net/

API revision: 2.1

1 Kbyte EEPROM is organized in 16 sectors with 4 blocks each. A block contains 16 bytes. The
last block of each sector is called “trailer”, which contains two secret keys (KeyA and KeyB) and
programmable access conditions for each block in this sector.
Keys are encrypted with proprietary algorithm called “Crypto1”.

Figure 1 : MF1S50 memory map

Sector
0 Block 0 Manufacturer Data

 Block 1 DATA
 Block 2 DATA

 Block 3
Trailer Keys and Access Conditions

Sector
1 Block 0 DATA

 Block 1 DATA
 Block 2 DATA

 Block 3
Trailer Keys and Access Conditions

…
Sector

15 Block 0 DATA

 Block 1 DATA
 Block 2 DATA

 Block 3
Trailer Keys and Access Conditions

Mifare Classic 4K (MF1S70) and its derivatives has EEPROM with 4096 bytes storage, where
3440 bytes are available for user data.

Digital Logic, www.d-logic.net Page 10

http://www.d-logic.net/

API revision: 2.1

4 Kbyte EEPROM is organized in 40 sectors with 4 blocks each. A block contains 16 bytes. The
last block of each sector is called “trailer”, which contains two secret keys (KeyA and KeyB) and
programmable access conditions for each block in this sector.
On the contrary of MF1S50, memory is organized in 32 sectors of 4 blocks (sectors 0 -31) and 8
sectors of 16 blocks (sectors 32 - 39).
Keys are encrypted with proprietary algorithm called “Crypto1”.
Figure 2 : MF1S70 memory map

Sector
0 Block 0 Manufacturer Data

 Block 1 DATA
 Block 2 DATA

 Block 3
Trailer Keys and Access Conditions

Sector
1 Block 0 DATA

 Block 1 DATA
 Block 2 DATA

 Block 3
Trailer Keys and Access Conditions

…
Sector

31 Block 0 DATA

 Block 1 DATA
 Block 2 DATA

 Block 3
Trailer Keys and Access Conditions

Sector
32 Block 0 DATA

 Block 1 DATA
 … DATA

 Block 15
Trailer Keys and Access Conditions

…
Sector

39 Block 0 DATA

 Block 1 DATA
 … DATA

 Block 15
Trailer Keys and Access Conditions

Digital Logic, www.d-logic.net Page 11

http://www.d-logic.net/

API revision: 2.1

Mifare Classic Keys and Access Conditions

Understanding memory map and access conditions of MF1S50 and MF1S70 cards is a must for
proper data manipulation with mentioned cards.
Since that subject needs further reading and study, it is out of scope of this document.
Please refer to manufacturer’s technical documents for further details. Documents are available
at public access on the manufacturer’s website.
Further reading of this document is not recommended before one get better insight and
understanding of mentioned chip types.
We will try to give brief explanation of access bits and conditions. The next part of the text is
taken from manufacturer’s documentation “MF1ICS50 – Functional specification” available
publicly here.

Access conditions

The access conditions for every data block and sector trailer are defined by 3 bits, which are
stored non-inverted and inverted in the sector trailer of the specified sector.
The access bits control the rights of memory access using the secret keys A and B. The access
conditions may be altered, provided one knows the relevant key and the current access condition
allows this operation.
Remark: With each memory access the internal logic verifies the format of the access conditions.
If it detects a format violation the whole sector is irreversible blocked.
Remark: In the following description the access bits are mentioned in the non-inverted mode
only.
The internal logic of the MF1ICS50 ensures that the commands are executed only after an
authentication procedure or never.

Figure 1 Access conditions

Access Bits Valid Commands Block Descriptio
n

C13 C23 C33 read, write 3 sector
trailer

C12 C22 C32
read, write, increment,

decrement, transfer, restore 2 data block

Digital Logic, www.d-logic.net Page 12

http://www.nxp.com/documents/data_sheet/M001053_MF1ICS50_rev5_3.pdf
http://www.d-logic.net/

API revision: 2.1

C11 C21 C31
read, write, increment,

decrement, transfer, restore 1 data block

C10 C20 C30
read, write, increment,

decrement, transfer, restore 0 data block

Figure 2 Organization of Access Bits

Byte
number 0 1 2 3 4 5 6 7 8 9 1

0
1
1

1
2

1
3

1
4

1
5

 Key A Access bits Key B

Bits 7 6 5 4 3 2 1 0
Byte 6 C23 C22 C21 C20 C13 C12 C11 C10
Byte 7 C13 C12 C11 C10 C33 C32 C31 C30
Byte 8 C33 C32 C31 C30 C23 C22 C21 C20
Byte 9
(GPB) General Purpose Byte - USER data

Access conditions for the sector trailer

Depending on the access bits for the sector trailer (block 3) the read/write access to the keys and
the access bits is specified as ‘never’, ‘key A’, ‘key B’ or key A|B’ (key A or key B).
On chip delivery the access conditions for the sector trailers and key A are predefined as
transport configuration. Since key B may be read in transport configuration, new cards must be
authenticated with key A. Since the access bits themselves can also be blocked, special care
should be taken during personalization of cards.

Figure 3 Access conditions for the sector trailer

Access bits
Access condition for

Remark KEYA Access bits KEYB

Digital Logic, www.d-logic.net Page 13

http://www.d-logic.net/

API revision: 2.1

C1
3

C2
3

C3
3

read write read write read write

0 0 0 neve
r

key
A key A neve

r
key
A

key
A Key B may be read[1]

0 1 0 neve
r

neve
r key A neve

r
key
A

neve
r Key B may be read[1]

1 0 0 neve
r

key
B

key
A|B

neve
r

neve
r

key
B

1 1 0 neve
r

neve
r

key
A|B

neve
r

neve
r

neve
r

0 0 1 neve
r

key
A key A key

A
key
A

key
A

Key B may be read,
transport configuration[1]

0 1 1 neve
r

key
B

key
A|B

key
B

neve
r

key
B

1 0 1 neve
r

neve
r

key
A|B

key
B

neve
r

neve
r

1 1 1 neve
r

neve
r

key
A|B

neve
r

neve
r

neve
r

[1] Remark: the grey marked lines are access conditions where key B is readable and may be used for data.

Access conditions for data blocks

Depending on the access bits for data blocks (blocks 0...2) the read/write access is specified as
‘never’, ‘key A’, ‘key B’ or ‘key A|B’ (key A or key B). The setting of the relevant access bits
defines the application and the corresponding applicable commands.
● Read/write block: The operations read and write are allowed.
● Value block: Allows the additional value operations increment, decrement, transfer and restore.

In one case (‘001’) only read and decrement are possible for a non-rechargeable card. In the
other case (‘110’) recharging is possible by using key B.

● Manufacturer block: The read-only condition is not affected by the access bits setting!

Figure 4 Access conditions for data blocks

Access
bits Access condition for

Application C
1

C
2

C
3 read write increment

decremen
t, transfer,

restore

Digital Logic, www.d-logic.net Page 14

http://www.d-logic.net/

API revision: 2.1

0 0 0 key A|B1 key A|B1 key A|B1 key A|B1 transport
configuration

0 1 0 key A|B1 never never never read/write block
1 0 0 key A|B1 key B1 never never read/write block
1 1 0 key A|B1 key B1 key B1 key A|B1 value block
0 0 1 key A|B1 never never key A|B1 value block
0 1 1 key B1 key B1 never never read/write block
1 0 1 key B1 never never never read/write block
1 1 1 never never never never read/write block

● Key management: In transport configuration key A must be used for authentication 1

1 If Key B may be read in the corresponding Sector Trailer it can’t serve for authentication (all grey marked lines in previous table).
Consequences: If the RDW tries to authenticate any block of a sector with key B using grey marked access conditions, the card will
refuse any subsequent access after authentication.

Digital Logic, www.d-logic.net Page 15

http://www.d-logic.net/

API revision: 2.1

Reader keys

All uFR Series devices has reserved nonvolatile memory space where following keys are stored:

• 32 Mifare Classic authentication keys, each 6 byte long, indexed [0-31]
• 16 AES keys for use with DESFire cards, each 16 bytes long, indexed [0-15]

All Mifare Classic keys have factory default value as 6 bytes of 0xFF.
All DESfire keys have factory default value as 16 bytes of 0x00.
Important Note: Keys are stored in reader using one way function and protected with password.
Keys can be changed with appropriate credentials but can’t be read in any circumstances. Please
bear this in mind when handling key values.

Digital Logic, www.d-logic.net Page 16

http://www.d-logic.net/

API revision: 2.1

Mifare Classic authentication modes and usage of keys

There are four possible ways of using Mifare keys when authenticating to card and they are
named as follows:

• Reader Keys mode (RK) - default
• Automatic Key Mode 1 (AKM1)

• Automatic Key Mode 2 (AKM2)

• Provided Key mode (PK)

All Mifare Classic related functions have basic function name for default authentication method
(RK) and three other variations with appended suffixes AKM1, AKM2 or PK. In further reading we
will explain each basic function with variations of key mode usage.
All Mifare keys can be used as “Key A” or “Key B” as defined in Mifare Classic technical
document.
For that purpose, each function which use authentication with keys also have parameter
“AuthMode” which defines if particular key is used as “Key A” or “Key B”.
In uFR Series API there are two constants defined for this case :

MIFARE_AUTHENT1A = 0x60 - actual key is used as “Key A”

MIFARE_AUTHENT1B = 0x61 - actual key is used as “Key B”

Digital Logic, www.d-logic.net Page 17

http://www.d-logic.net/

API revision: 2.1

Reader Keys mode (RK)

When using this authentication mode, keys stored in reader's memory are used for authentication
to Mifare card. Reader Key index [0..31] is passed as function argument.
Example:
Reader keys are all set to default value 6 bytes of 0xFF. We want to use key “A0 A1 A2 A3 A4

A5h” as key A to authenticate to card.
First this key must be stored into reader's NVRAM at certain index, for example index=3.

Next, we use “SomeFunction” to do something with card where authentication is must and key is
“A0 A1 A2 A3 A4 A5h”. We will call “SomeFunction” with KeyIndex = 3 and AuthMode =”
MIFARE_AUTHENT1A”.
 In this way authentication key is not exposed during communication with host.

Automatic Key Mode 1 (AKM1)

This mode is also using keys stored at reader's memory. Difference between this mode and RK is
that keys are used at predefined order.
In this mode, keys indexed from [0..15] are used as “Key A” for each corresponding sector while
keys indexed from [16..31] are used as “Key B” for each corresponding sector. That means Key
A for Sector 0 is Key indexed as [0] etc.
Brief example:
Sector 0 : Key A = Key [0], Key B = Key [16]

Sector 1 : Key A = Key [1], Key B = Key [17]

Sector 2 : Key A = Key [2], Key B = Key [18]

Sector 3 : Key A = Key [3], Key B = Key [19]

…

Sector 15 : Key A = Key [15], Key B = Key [31]

Digital Logic, www.d-logic.net Page 18

http://www.d-logic.net/

API revision: 2.1

Automatic Key Mode 2 (AKM2)

This mode is also using keys stored at reader's memory. Difference is that keys are used at
predefined order as even and odd keys.
In this mode, keys indexed with even numbers {0,2,4...30} are used as “Key A” for each
corresponding sector while keys indexed with odd numbers {1,3,5...31} are used as “Key B” for
each corresponding sector.
Brief example:
Sector 0 : Key A = Key [0], Key B = Key [1]

Sector 1 : Key A = Key [2], Key B = Key [3]

Sector 2 : Key A = Key [4], Key B = Key [5]

Sector 3 : Key A = Key [6], Key B = Key [7]

…

Sector 15 : Key A = Key [30], Key B = Key [31]

NOTE: In all three above mentioned modes, when using Mifare Classic 4K cards, there are some
trade off.
Mifare Classic 4K have 40 sectors instead of 16 as Mifare Classic 1K. In such case, Key A for
Sector 0 is the same as Key A for Sector 16 etc. For the last 8 sectors (sectors 32 to 39) the
same readers keys are used that correspond to sectors 0 to 7 and 16 to 23.

Example:
Sector 16 : Key A, Key B = Sector [0] keys

Sector 17 : Key A, Key B = Sector [1] keys

Sector 18 : Key A, Key B = Sector [2] keys

Sector 31 : Key A, Key B = Sector [15] keys

…

Sector 32 : Key A, Key B = Sector [0] keys

Sector 33 : Key A, Key B = Sector [1] keys

…

Sector 39 : Key A, Key B = Sector [7] keys

Digital Logic, www.d-logic.net Page 19

http://www.d-logic.net/

API revision: 2.1

Provided Key mode (PK)

In this case keys stored into reader are not in use. Key is passed as function parameter as it's
real value, like a pointer to array of bytes :“A0 A1 A2 A3 A4 A5h”.

For example, we will call “SomeFunction” with parameters “Key” and “AuthMode”, where “Key” is
a pointer to byte array which contains key value bytes.
This method is convenient for testing but we strongly discourage use of this method in real
production environments, since keys is exposed on “wire” during communication with host.

Other supported cad/tag types
Currently supported card/tag types in latest firmware revision are:

● Mifare Classic (and derivatives like Fudan FM11RF08)
● Infineon SLE66R35
● Mifare Ultralight (directly supported NFC Type2 Tag)
● Mifare Ultralight C (directly supported NFC Type2 Tag)
● NTAG 203, 210, 212, 213, 215, 216 (directly supported NFC Type2 Tag)
● Mikron MIK640D (directly supported NFC Type2 Tag)
● Other NFC Type2 Tag compatible card are supported as ‘T2T generic type’, calling

GetNfcT2tVersion() gives more data about tag.
● Mifare Plus (in Mifare Classic compatibility mode)
● Mifare DESFire EV1 (in AES128 mode)
● Mifare DESFire EV2 (in EV1 compatibility mode)

Future firmware and library releases will support additional currently missing features and card
types.

Digital Logic, www.d-logic.net Page 20

http://www.d-logic.net/

API revision: 2.1

API - Programming reference

Scope of this section is to show basic usage scenarios of uFR Series API library functions.
For code snippets and source code examples, please refer to “SDK” section at our download web
page.
Most examples are written in various programming languages including C/C++, C#.NET,
C++.NET, VB.NET, Java, JavaScript, Python, Lazarus/Delphi.
Dynamic libraries are a part of source code example zip archives. Some libraries may be
obsolete due to time of writing of example.
Please be sure to always use the latest library revision from “Libraries” section at our download
web page.
Simply replace obsolete libraries with latest library revision to explore all features mentioned in
this document.

Digital Logic, www.d-logic.net Page 21

http://www.d-logic.net/

API revision: 2.1

Communication and command flow

Communication with uFR Series reader (‘reader” in further text) is established via USB physical
communication link.
On top physical USB layer is FTDI’s direct access through D2XX drivers library.
uFR Series dynamic library (“uFCoder library” in further reading) is placed above D2XX library.

uFCoder library

FTDI D2XX driver library
USB Host Controller Driver

uFR Series device and host are in master-slave relation, where host represents master and
device is a slave.
Command flow is always initiated from master to slave and device is only responding to
commands.

The following sections will describe single reader usage, meaning that only one reader is
connected to host.
Connecting several readers to single host is possible and shall be described in separate section.

Digital Logic, www.d-logic.net Page 22

http://www.d-logic.net/

API revision: 2.1

Important update:
From library version 4.01 and up, it is possible to establish communication with reader without
using FTDI’s D2XX driver by calling ReaderOpenEx function. Library can talk to reader via COM
port (physical or virtual) without implementing FTDI’s calls. However, this approach is not fast as
with use of D2XX drivers but gives much more flexibility to users who had to use COM protocol
only, now they can use whole API set of functions via COM port.

uFCoder library

COM port (physical or virtual)

Digital Logic, www.d-logic.net Page 23

http://www.d-logic.net/

API revision: 2.1

Program flow – basic usage

To establish communication with reader, there must be no other processes to disturbing this
communication, which means that only one process or application can have open communication
link with reader.
To establish communication link, ReaderOpen () command must be sent.
After successful link opening, all other library functions can be used.
At the end of use, link must be closed by ReaderClose () command, which is usually at
application exit or process end.

Digital Logic, www.d-logic.net Page 24

http://www.d-logic.net/

API revision: 2.1

Program flow – polling

In many cases, there is a need to constantly examine some state or check for some events, like
for card presence or similar. That is also known as “Polling Loop”.
In polling loop check is performed several times in second and number of check may vary.
However, good practice is not to exceed 10 - 15 checks per second.

Almost all uFCoder library functions return Zero value if function call was successful and error
code if not.

Digital Logic, www.d-logic.net Page 25

http://www.d-logic.net/

API revision: 2.1

API - descriptions

Reader and library related functions

As mentioned earlier, uFCoder function call returns (in most cases) integer value as result of
function operation. For possible values please refer to table ERR_CODES in Appendix: ERROR
CODES (DL_STATUS result).
Exception from this rule are some functions with return parameters “c_string” which is a pointer to
array of char (“typedef const char * c_string”).
Here is a list of reader and library related functions with return types:

Reader and library functions

Return Type Function name

UFR_STATUS ReaderOpen

UFR_STATUS ReaderOpenEx

UFR_STATUS ReaderReset

UFR_STATUS ReaderClose

UFR_STATUS ReaderStillConnected

UFR_STATUS GetReaderType

UFR_STATUS GetReaderSerialNumber

UFR_STATUS GetReaderHardwareVersion

UFR_STATUS GetReaderFirmwareVersion

UFR_STATUS GetBuildNumber

UFR STATUS GetReaderSerialDescription

UFR STATUS ChangeReaderPassword

UFR STATUS ReaderKeyWrite

UFR STATUS ReaderKeysLock

UFR STATUS ReaderKeysUnlock

UFR STATUS ReadUserData

UFR STATUS WriteUserData

UFR STATUS UfrEnterSleepMode

UFR STATUS UfrLeaveSleepMode

UFR STATUS AutoSleepSet

UFR STATUS AutoSleepGet

UFR STATUS SetSpeedPermanently

UFR STATUS GetSpeedParameters

UFR STATUS SetAsyncCardIdSendConfig

UFR STATUS GetAsyncCardIdSendConfig

UFR STATUS ReaderUISignal

UFR STATUS UfrRedLightControl

UFR STATUS SetDisplayData**

Digital Logic, www.d-logic.net Page 26

http://www.d-logic.net/

API revision: 2.1

UFR_STATUS SetDisplayIntensity**

UFR_STATUS GetDisplayIntensity**

UFR_STATUS SetSpeakerFrequency

uint32_t GetDllVersion

c_string GetDllVersionStr

c_string UFR_STATUS2String

c_string GetReaderDescription

** - RFU(reserved for future use)

ReaderOpen

Function description
Open reader communication port.

Function declaration (C language)
UFR_STATUS ReaderOpen(void)

No parameters required.

ReaderOpenByType

Function description
Opens a port of connected reader using readers family type. Useful for speed up opening for non
uFR basic reader type (e.g. BaseHD with uFR support).

Function declaration (C language)
UFR_STATUS ReaderOpenByType(uint32_t reader_type);

Parameters
0 - auto, same as call ReaderOpen()

1 - uFR type (1 Mbps)

2 - uFR RS232 type (115200 bps)

3 - BASE HD uFR type (250 Kbps)

ReaderOpenEx

Function description
Open reader communication port in several different ways. Can be used for establishing
communication with COM port too.
Function declaration (C language)

Digital Logic, www.d-logic.net Page 27

http://www.d-logic.net/

API revision: 2.1

UFR_STATUS ReaderOpenEx(uint32_t reader_type,

 c_string port_name,

 uint32_t port_interface,

 void *arg);

Parameters

reader_type 0 : auto - same as call ReaderOpen()
1 : uFR type (1 Mbps)
2 : uFR RS232 type (115200 bps)
3 : BASE HD uFR type (250 Kbps)

port_name is c-string type used to open port by given serial name. If provide NULL or empty
string that is AUTO MODE which calls ReaderOpenEx() and test all available ports
on the system.
serial port name, identifier, like
"COM3" on Windows or
"/dev/ttyS0" on Linux or
"/dev/tty.serial1" on OS X
or if you select FTDI, reader serial number like "UN123456", if reader have
integrated FTDI interface

port_interfac

e

type of communication interfaces (define interface which we use while connecting
to the printer), supported value's:
0 : auto - first try FTDI than serial if port_name is not defined
1 : try serial / virtual COM port / interfaces
2 : try only FTDI communication interfaces
10 : try to open Digital Logic Shields with RS232 uFReader on Raspberry Pi (serial
interfaces with GPIO reset)

arg Reserved for future use, must be NULL.

ReaderReset

Function description
Physical reset of reader communication port.
Function declaration (C language)
UFR_STATUS ReaderReset(void)

No parameters required.

ReaderClose

Function description
Close reader communication port.

Digital Logic, www.d-logic.net Page 28

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS ReaderClose(void)

No parameters required.

ReaderStillConnected

Function description

Retrieve info if reader is still connected to host.
Function declaration (C language)
UFR_STATUS ReaderStillConnected(uint32_t *connected)

Parameter

connected pointer to connected variable

“connected” as result:
 > 0 Reader is connected on system
 = 0 Reader is not connected on system anymore (or closed)
 < 0 other error
“connected” - Pointer to unsigned int type variable 32 bit long, where the
information about readers availability is written. If the reader is connected on
system, function store 1 (true) otherwise, on some error, store zero in that variable.

GetReaderType

Function description

Returns reader type as a pointer to 4 byte value.
Function declaration (C language)
UFR_STATUS GetReaderType(uint32_t *lpulReaderType)

Parameter

lpulReaderType pointer to lpulReaderType variable.
“lpulReaderType” as result – please refer to Appendix: DLogic reader type
enumeration.
E.g. for µFR Nano Classic readers this value is 0xD1180022.

Digital Logic, www.d-logic.net Page 29

http://www.d-logic.net/

API revision: 2.1

GetReaderSerialNumber

Function description

Returns reader serial number as a pointer to 4 byte value.
Function declaration (C language)
UFR_STATUS GetReaderSerialNumber(uint32_t *lpulSerialNumber)

Parameter

lpulSerialNumber pointer to lpulSerialNumber variable.
 “lpulSerialNumber “ as result holds 4 byte serial number value.

GetReaderHardwareVersion

Function description

Returns reader hardware version as two byte representation of higher and lower byte.
Function declaration (C language)
UFR_STATUS GetReaderHardwareVersion(uint8_t *version_major,

uint8_t *version_minor);

Parameters

version_major pointer to version major variable

version_minor pointer to version minor variable

GetReaderFirmwareVersion

Function description

Returns reader firmware version as two byte representation of higher and lower byte.
Function declaration (C language)
UFR_STATUS GetReaderFirmwareVersion(uint8_t *version_major,

 uint8_t *version_minor);

Parameters

version_major pointer to version major variable

version_minor pointer to version minor variable

Digital Logic, www.d-logic.net Page 30

http://www.d-logic.net/

API revision: 2.1

GetBuildNumber

Function description

Returns reader firmware build version as one byte representation.
Function declaration (C language)
UFR_STATUS GetBuildNumber(uint8_t *build)

Parameter

build pointer to build variable

GetReaderSerialDescription

Function description

Returns reader’s descriptive name as a row of 8 chars.
Function declaration (C language)
UFR_STATUS GetReaderSerialDescription(uint8_t pSerialDescription[8])

Parameter

pSerialDescription[8] pointer to pSerialDescription array

ChangeReaderPassword

Function description

This function is used in Common, Advance and Access Control set of functions.
It defines/changes password which I used for:

● Locking/unlocking keys stored into reader
● Setting date/time of RTC

Function declaration (C language)
UFR_STATUS ChangeReaderPassword(uint8_t *old_password,

uint8_t *new_password)

Parameters
old_password pointer to the 8 bytes array containing current password

new_password pointer to the 8 bytes array containing new password

Digital Logic, www.d-logic.net Page 31

http://www.d-logic.net/

API revision: 2.1

ReaderKeyWrite

Function description

Store a new key or change existing key under provided index parameter.The keys are in a
special area in EEPROM that can not be read anymore which gains protection.
Function declaration (C language)
UFR_STATUS ReaderKeyWrite(const uint8_t *aucKey,

uint8_t ucKeyIndex)
Parameters
aucKey Pointer to an array of 6 bytes containing the key. Default key

values are always “FF FF FF FF FF FF” hex.
ucKeyIndex key Index. Possible values are 0 to 31.

ReaderKeysLock

Function description

Lock reader’s keys to prevent further changing.
Function declaration (C language)
UFR_STATUS ReaderKeysLock(const uint8_t *password);

Parameter

password pointer to the 8 bytes array containing valid password.

ReaderKeysUnlock

Function description

Unlock reader’s keys if they are locked with previous function.
The factory setting is that reader keys are unlocked.
Function declaration (C language)
UFR_STATUS ReaderKeysUnlock(const uint8_t *password);

Parameter

password pointer to the 8 bytes array containing valid password.

Digital Logic, www.d-logic.net Page 32

http://www.d-logic.net/

API revision: 2.1

ReaderSoftRestart

Function description
This function is used to restart the reader by software. It sets all readers parameters to default
values and close RF field which resets all the cards in the field.

Function declaration (C language)
UFR_STATUS ReaderSoftRestart(void);
No parameters required.

ReadUserData

Function description

Read user data written in device NV memory.
User data is 16 byte long.
Function declaration (C language)
UFR_STATUS ReadUserData(uint8_t *aucData)

Parameter

aucData pointer to 16 byte array containing user data.

WriteUserData

Function description

Write user data into device’s NV memory. User data is 16 byte long.
Function declaration (C language)
UFR_STATUS WriteUserData(uint8_t *aucData)

Parameter

aucData pointer to 16 byte array containing user data.

UfrEnterSleepMode

Function description

Turn device into Sleep mode.
Function declaration (C language)
UFR_STATUS UfrEnterSleepMode(void)

No parameters used.

Digital Logic, www.d-logic.net Page 33

http://www.d-logic.net/

API revision: 2.1

UfrLeaveSleepMode

Function description

Wake up device from Sleep mode.
Function declaration (C language)
UFR_STATUS UfrLeaveSleepMode(void)

No parameters used.

AutoSleepSet

Function description

Turn device into Sleep mode after certain amount of time.
Function declaration (C language)
UFR_STATUS AutoSleepSet(uint8_t seconds_wait)

Parameter

seconds_wait variable holding value of seconds to wait before enter into sleep.
If parameter is 0x00, AutoSleep feature is turned off (default state).

AutoSleepGet

Function description

Get status of AutoSleep mode.
Function declaration (C language)
UFR_STATUS AutoSleepGet(uint8_t seconds_wait)

Parameter

seconds_wait variable holding value of seconds to wait before enter into sleep.
If parameter is 0x00, AutoSleep feature is turned off (default state).

SetSpeedPermanently

Function description

This function is used for setting communication speed between reader and ISO144443-4 cards.
For other card types, default speed of 106 kbps is in use.

Digital Logic, www.d-logic.net Page 34

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS SetSpeedPermanently (uint8_t tx_speed,

uint8_t rx_speed)

Parameters

tx_speed setup value for transmit speed

rx_speed setup value for receive speed

Valid speed setup values are:

Const Configured speed

0 106 kbps (default)

1 212 kbps

2 424 kbps

On some reader types maximum rx_speed is 212 kbps. If you try to set higher speed than
possible, reader will automatically set the maximum possible speed.

GetSpeedParameters

Function description

Returns baud rate configured with previous function.
Function declaration (C language)
UFR_STATUS GetSpeedParameters(uint8_t *tx_speed,

uint8_t *rx_speed)

Parameters
tx_speed pointer to variable, returns configured value for transmit speed
rx_speed pointer to variable, returns configured value for receive speed

Digital Logic, www.d-logic.net Page 35

http://www.d-logic.net/

API revision: 2.1

SetAsyncCardIdSendConfig

Function description

This function is used for “Asynchronous UID sending” feature. Returned string contains
hexadecimal notation of card ID with one mandatory suffix character and one optional prefix
character.
Example:
Card ID is 0xA103C256, prefix is 0x58 ('X'), suffix is 0x59 ('Y')
Returned string is “XA103C256Y”
Function sets configuration parameters for this feature.
Function declaration (C language)
UFR_STATUS SetAsyncCardIdSendConfig (uint8_t send_enable,

uint8_t prefix_enable,
uint8_t prefix,
uint8_t suffix,
uint8_t send_removed_enable,

uint32_t async_baud_rate);

Parameters
send_enable turn feature on/off (0/1)

prefix_enable use prefix or not (0/1)

prefix prefix character

suffix suffix character

send_removed_enable Turn feature on/off (0/1).
If feature is enabled then Asynchronous UID will
also be sent when removing a card from the reader
field.

async_baud_rate baud rate value (e.g. 9600)

GetAsyncCardIdSendConfig

Function description

Returns info about parameters configured with previous function.

Digital Logic, www.d-logic.net Page 36

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS GetAsyncCardIdSendConfig (uint8_t *send_enable,

uint8_t *prefix_enable,
uint8_t *prefix,
uint8_t *suffix,
uint8_t *send_removed_enable,

uint32_t *async_baud_rate);

Parameters
send_enable pointer, if feature is on/off (0/1)

prefix_enable pointer, if prefix is used or not (0/1)

prefix pointer to variable holding prefix character

suffix pointer to variable holding suffix character

send_removed_enable Pointer. If value is 0 then feature is off. Otherwise,
feature is on.
If feature is enabled then Asynchronous UID is sent
when the card is removed from the reader field.

async_baud_rate pointer to variable holding configured baud rate

SetAsyncCardIdSendConfigEx

Function description
Function sets the parameters of card ID sending.
Function declaration (C language)
UFR_STATUS SetAsyncCardIdSendConfigEx(

uint8_t send_enable,
uint8_t prefix_enable,
uint8_t prefix,
uint8_t suffix,
uint8_t send_removed_enable,
uint8_t reverse_byte_order,
uint8_t decimal_representation,
uint32_t async_baud_rate);

Parameters

send_enable turn feature on/off (0/1)

prefix_enable use prefix or not (0/1)

prefix prefix character

Digital Logic, www.d-logic.net Page 37

http://www.d-logic.net/

API revision: 2.1

suffix suffix character

send_removed_enable Turn feature on/off (0/1).
If feature is enabled then Asynchronous UID will also be sent when
removing a card from the reader field.

reverse_byte_order Turn feature on/off (0/1).
If feature is disabled then the order of bytes (UID) will be as on card.
If feature is enabled then the order of bytes will be reversed then the
card’s order of bytes.

decimal_representation Turn feature on/off (0/1).
If feature is enabled then the UID will be presented as a decimal
number.
If feature is disabled then the UID will be presented as a hexadecimal
number

async_baud_rate baud rate value (e.g. 9600)

GetAsyncCardIdSendConfigEx

Function description
Function returns the parameters of card ID sending.
Function declaration (C language)
UFR_STATUS GetAsyncCardIdSendConfigEx(

uint8_t *send_enable,
uint8_t *prefix_enable,
uint8_t *prefix,
uint8_t *suffix,
uint8_t *send_removed_enable,
uint8_t *reverse_byte_order,
uint8_t *decimal_representation,
uint32_t *async_baud_rate);

Parameters

send_enable pointer to the sending enable flag

prefix_enable pointer to the prefix existing flag

prefix pointer to prefix character

suffix pointer to suffix character

send_removed_enable pointer to flag

Digital Logic, www.d-logic.net Page 38

http://www.d-logic.net/

API revision: 2.1

reverse_byte_order pointer to flag

decimal_representation pointer to flag

async_baud_rate pointer to baud rate variable

ReaderUISignal

Function description

This function turns sound and light reader signals. Sound signals are performed by reader’s
buzzer and light signals are performed by reader’s LEDs.
There are predefined signal values for sound and light:
 light_signal_mode

: beep_signal_mode:

 0 None

 0 None

 1 Long Green

 1 Short

 2 Long Red

 2 Long

 3 Alternation

 3 Double Short

 4 Flash

 4 Triple Short

 5 Triplet Melody

Function declaration (C language)
UFR_STATUS ReaderUISignal(uint8_t light_signal_mode,

uint8_t beep_signal_mode)

Parameters

light_signal_mode value from table (0 - 4)

beep_signal_mode value from table (0 - 5)

Digital Logic, www.d-logic.net Page 39

http://www.d-logic.net/

API revision: 2.1

UfrRedLightControl

Function description

This function turns Red LED only.
If “light_status” value is 1, red light will be constantly turned on until receive “light_status “ value
0.
Function declaration (C language)
UFR_STATUS UfrRedLightControl(uint8_t light_status)

Parameter

light_status value 0 or 1

SetSpeakerFrequency

Function description

This function plays constant sound of “frequency” Hertz.
Function declaration (C language)
UFR_STATUS SetSpeakerFrequency(uint16_t frequency)

Parameter

frequency frequency in Hz

To stop playing sound, send 0 value for “frequency”.

Handling with multiple readers
If you want to communicate and use multiple readers from an application, you have to follow the
initial procedure for enumerating uFR compatible devices and getting theirs handles. First call
ReaderList_UpdateAndGetCount() to prepare internal list of connected devices and then call
ReaderList_GetInformation() several times to get information of every reader.
Handle is used to identify certain reader when calling multi-functions (with suffix M).

ReaderList_UpdateAndGetCount

Function description
This is the first function in the order for execution for the multi-reader support.
The function prepare the list of connected uF-readers to the system and returns the number of list
items - number of connected uFR devices.
ReaderList_UpdateAndGetCount() scan all communication ports for compatible devices, probes
opened readers if still connected, if not close and mark their handles for deletion. If some device

Digital Logic, www.d-logic.net Page 40

http://www.d-logic.net/

API revision: 2.1

is disconnected from system this function should remove its handle.
Function declaration (C language)
UFR_STATUS ReaderList_UpdateAndGetCount(int32_t * NumberOfDevices);

Parameters

NumberOfDevices how many compatible devices is connected to the system

Returns: status of execution

ReaderList_GetInformation

Function description
Function for getting all relevant information about connected readers.
You must call the function as many times as there are detected readers. E.g. If you have tree
connected readers, detected by ReaderList_UpdateAndGetCount(), you should call this function
tree times.
Function declaration (C language)
UFR_STATUS ReaderList_GetInformation(

UFR_HANDLE *DeviceHandle,

c_string *DeviceSerialNumber,

int *DeviceType, int *DeviceFWver,

int *DeviceCommID,int *DeviceCommSpeed,

c_string *DeviceCommFTDISerial,

c_string *DeviceCommFTDIDescription,

int *DeviceIsOpened,

int *DeviceStatus);

Parameters

DeviceHandle assigned Handle to the uFR reader - pointer for general purpose
(void * type in C)

DeviceSerialNumber device serial number, pointer to static reserved information in
library (no need to reserve memory space)

DeviceType device identification in Digital Logic AIS database

DeviceFWver version of firmware

DeviceCommID device identification number (master)

DeviceCommSpeed communication speed in bps

DeviceCommFTDISerial FTDI COM port identification, pointer to static reserved information
in library (no need to reserve memory space)

Digital Logic, www.d-logic.net Page 41

http://www.d-logic.net/

API revision: 2.1

DeviceCommFTDIDescription FTDI COM port description, pointer to static reserved information
in library (no need to reserve memory space)

DeviceIsOpened is Device opened - 0 not opened, other value is opened

DeviceStatus actual device status

ReaderList_Destroy

Function description

Force handle deletion when you identify that the reader is no longer connected, and want to
release the handle immediately. If the handle exists in the list of opened devices, function would
try to close communication port and destroy the handle.
When uF-reader is disconnected ReaderList_UpdateAndGetCount() will do that (destroy)
automatically in next execution.
Function declaration (C language)
UFR_STATUS ReaderList_Destroy(UFR_HANDLE DeviceHandle);

Parameter

DeviceHandle the handle that will be destroyed

Example (in C):

Digital Logic, www.d-logic.net Page 42

http://www.d-logic.net/

API revision: 2.1

int main(void)

{

 puts(GetDllVersionStr());

 UFR_STATUS status;

 int32_t NumberOfDevices;

 status = ReaderList_UpdateAndGetCount(&NumberOfDevices);

 if (status)

 {

 // TODO: check error

 printf("ReaderList_UpdateAndGetCount(): error= %s\n",

 UFR_Status2String(status));

 return EXIT_SUCCESS;

 }

 printf("ReaderList_UpdateAndGetCount(): NumberOfDevices=

%d\n",

 NumberOfDevices);

 for (int i = 0; i < NumberOfDevices; ++i)

 {

 UFR_HANDLE DeviceHandle;

 c_string DeviceSerialNumber;

 int DeviceType;

 int DeviceFWver;

 int DeviceCommID;

 int DeviceCommSpeed;

 c_string DeviceCommFTDISerial;

 c_string DeviceCommFTDIDescription;

 int DeviceIsOpened;

 int DeviceStatus;

 status = ReaderList_GetInformation(&DeviceHandle,

 &DeviceSerialNumber, &DeviceType, &DeviceFWver,

 &DeviceCommID, &DeviceCommSpeed,

 &DeviceCommFTDISerial,

&DeviceCommFTDIDescription,

 &DeviceIsOpened, &DeviceStatus);

 printf("{%d/%d} DeviceHandle= %p, DeviceSerialNumber=

%s, "

 "DeviceType= %X, DeviceFWver= %d, "

 "DeviceCommID= %d, DeviceCommSpeed= %d, "

 "\n\t\t"

 "DeviceCommFTDISerial= %s, DeviceCommFTDIDescription=

%s, "

Digital Logic, www.d-logic.net Page 43

http://www.d-logic.net/

API revision: 2.1

 "\n\t\t"

 "DeviceIsOpened= %d, DeviceStatus= %d\n", i + 1,

 NumberOfDevices, DeviceHandle, DeviceSerialNumber,

 DeviceType, DeviceFWver, DeviceCommID,

DeviceCommSpeed,

 DeviceCommFTDISerial, DeviceCommFTDIDescription,

 DeviceIsOpened, DeviceStatus);

 puts(GetReaderDescriptionM(DeviceHandle));

 }

 return EXIT_SUCCESS;

}

Helper library functions

GetDllVersionStr

Function description

This function returns library version as string.
Function declaration (C language)
c_string GetDllVersionStr(void)

No parameters used.

GetDllVersion

Function description
This function returns library version as number.

Function declaration (C language)
uint32_t GetDllVersion(void);

Returns compact version number, in little-endian format

Low Byte: Major version number

High Byte: Minor version number

Upper byte: Build number

Master Byte: reserved -

Digital Logic, www.d-logic.net Page 44

http://www.d-logic.net/

API revision: 2.1

UFR_STATUS2String

Function description

This is helper library function. Returns DL_STATUS result code as readable descriptive data.
Return type is string. For DL_STATUS enumeration, please refer to Appendix: ERROR CODES
(DL_STATUS result).
Function declaration (C language)
c_string UFR_Status2String(const UFR_STATUS status)

GetReaderDescription

Function description

This function returns reader’s descriptive name. Return type is string. No parameters required.
Function declaration (C language)
c_string GetReaderDescription(void)

No parameters used.

Card/tag related commands
General purpose card related commands

Following functions are applicable to all card types.
UFR STATUS GetDlogicCardType

UFR STATUS GetCardId

UFR STATUS GetCardIdEx

UFR STATUS GetLastCardIdEx

GetDlogicCardType

Function description

This function returns card type according to DlogicCardType enumeration. For details, please
refer to Appendix: DLogic CardType enumeration.
If the card type is not supported, function return the lpucCardType value equal to zero :
TAG_UNKNOWN = 0x00

Digital Logic, www.d-logic.net Page 45

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS GetDlogicCardType(uint8_t *lpucCardType)

Parameter

lpucCardType pointer to lpucCardType variable. Variable lpucCardType holds returned value
of actual card type present in RF field.

GetNfcT2TVersion

Function description
This function returns 8 bytes of the T2T version. All modern T2T chips support this functionality
and have in common a total of 8 byte long version response. This function is primarily intended to
use with NFC_T2T_GENERIC tags (i.e. tags which return 0x0C in the *lpucCardType parameter
of the GetDlogicCardType()).

Function declaration (C language)
UFR_STATUS GetNfcT2TVersion(uint8_t lpucVersionResponse[8]);

Parameter

lpucVersionResponse[8] array containing 8 bytes which will receive raw T2T version.

NfcT2TSafeConvertVersion

Function description
This is a helper function for converting raw array of 8 bytes received by calling
GetNfcT2TVersion(). All modern T2T chips having same or very similar structure of the T2T
version data represented in the uFR API by the structure type t2t_version_t:

typedef struct t2t_version_struct {

uint8_t header;

uint8_t vendor_id;

uint8_t product_type;

uint8_t product_subtype;

uint8_t major_product_version;

uint8_t minor_product_version;

uint8_t storage_size;

uint8_t protocol_type;

} t2t_version_t;

This function is primarily intended to use with NFC_T2T_GENERIC tags (i.e. tags which return
0x0C in the *lpucCardType parameter of the GetDlogicCardType()). Conversion done by this

Digital Logic, www.d-logic.net Page 46

http://www.d-logic.net/

API revision: 2.1

function is "alignment safe".

Function declaration (C language)

void NfcT2TSafeConvertVersion(t2t_version_t *version,

const uint8_t *version_record);

Parameters

version pointer to the structure of the t2t_version_t type which will receive converted
T2T version

version_record pointer to array containing 8 bytes of the raw T2T version acquired using
function GetNfcT2TVersion()

GetCardId

Function description
Returns card UID as a 4-byte array. This function is deprecated and used only for backward
compatibility with older firmware versions (before v2.0). We strongly discourage use of this
function. This function can’t successfully handle 7 byte UIDS.

Function declaration (C language)
UFR_STATUS GetCardId(uint8_t *lpucCardType,

 uint32_t *lpulCardSerial)

Parameters
lpucCardType returns pointer to variable which holds card type according to SAK

lpulCardSerial returns pointer to array of card UID bytes, 4 bytes long ONLY

GetCardIdEx

Function description
This function returns UID of card actually present in RF field of reader. It can handle all three
known types : 4, 7 and 10 byte long UIDs.

This function is recommended for use instead of GetCardId.

Digital Logic, www.d-logic.net Page 47

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS GetCardIdEx(uint8_t *lpucSak,

 uint8_t *aucUid,

 uint8_t *lpucUidSize);

Parameters
lpucSak returns pointer to variable which holds card type according to

SAK

aucUid returns pointer to array of card UID bytes, variable length
lpucUidSize returns pointer to variable holding information about UID length

GetLastCardIdEx

Function description
This function returns UID of last card which was present in RF field of reader. It can handle all
three known types : 4, 7 and 10 byte long UIDs. Difference with GetCardIdEx is that card does not
be in RF field mandatory, UID value is stored in temporary memory area.

Function declaration (C language)
UFR_STATUS GetLastCardIdEx(uint8_t *lpucSak,

 uint8_t *aucUid,

 uint8_t *lpucUidSize);

Parameters :
lpucSak returns pointer to variable which holds card type according to

SAK

aucUid returns pointer to array of card UID bytes, variable length
lpucUidSize returns pointer to variable holding information about UID

length

Mifare Classic specific functions
Functions specific to Mifare Classic ® family of cards (Classic 1K and 4K). All functions are
dedicated for use with Mifare Classic ® cards. However, some functions can be used with other
card types, mostly in cases of direct addressing scheme and those functions will be highlighted in
further text. There are few types of following functions:

d) Block manipulation functions – direct and indirect addressing
Functions for manipulating data in blocks of 16 byte according to Mifare Classic ®
memory structure organization.

Digital Logic, www.d-logic.net Page 48

http://www.d-logic.net/

API revision: 2.1

e) Value Block manipulation functions – direct and indirect addressing
Functions for manipulating value blocks byte according to Mifare Classic ® memory
structure organization.

f) Linear data manipulation functions
Functions for manipulating data of Mifare Classic ® memory structure as a Linear
data space.

Function’s variations

All listed functions have 4 variations according to key mode, as explained earlier in chapter “Mifare
Classic authentication modes and usage of keys”. Let’s take “BlockRead” function as example:
BlockRead RK mode

BlockRead_AKM1 AKM1 mode

BlockRead_AKM2 AKM2 mode

BlockRead_PK PK mode

Direct or Indirect addressing

In general, when speaking about direct and indirect addressing functions, both function types
does the same thing. Main difference is in a way of block addressing.
Direct addressing functions use absolute value for Block address according to Mifare Classic
memory map, where real block address (0-63) corresponds to function parameter value.
Indirect addressing functions use Block-In-Sector approach. Each Sector have 4 blocks (or more,
for higher Sectors of the Mifare Classic 4K cards), so function always need two parameters: real
Sector address and relative Block address in particular sector.
This approach is very useful for loop usage etc. Generally, it is up to user which one of these two
function types will use.

Linear Address Data Space

Writing of consecutive data larger than 1 block (16 bytes) can be pretty tricky because of Mifare
Classic memory organization map. Each 4th block is so called “Trailer Block” containing keys and
access conditions.
For that purpose, uFR Series API use specific set of functions. User can write data even larger
than 1 block without concerning about Trailer Blocks. Reader’s firmware will take care of Trailer
Blocks and arrange data in consecutive order, automatically jumping over Trailer Blocks.
Parameters needed for this purpose are starting address in bytes and data length. Linear
Address Data Space always begin at first free byte of specific card. In case of Mifare Classic
cards, it is Byte 0 of Block 1 in Sector 0.
These type of functions can be used with other card types and Linear Address Data Space may
start at different address. For example in case of Mifare Ultralight, Linear Address Data Space
start at byte 0 of Page 4, exactly after OTP bytes page.

Digital Logic, www.d-logic.net Page 49

http://www.d-logic.net/

API revision: 2.1

Following example shows how Linear Address Data Space looks like in case of Mifare Classic
card.

Let’s write “Data” of 85 bytes, indexed as 0..84 bytes.
Using LinearWrite function, we will send Data, Starting address 0 and DataLength 85.
Reader’s firmware will do the rest in following manner:

Sector 0 Block 0 Manufacturer Block

 Block 1 Bytes 0 -15

LINEAR

SPACE

Linear Space starts here at Byte 0
 Block 2 Bytes 16 - 31
 Block 3 Trailer Jumping over Trailer
Sector 1 Block 0 Bytes 32 - 47
 Block 1 Bytes 48 - 63
 Block 2 Bytes 64 - 79
 Block 3 Trailer Jumping over Trailer

Sector 2
Block 0 Bytes 80- 84

Rest of Block is not changed (Bytes 5 -
15)

List of Mifare Classic specific functions

UFR_STATUS BlockRead *1
UFR_STATUS BlockWrite *1
UFR_STATUS BlockInSectorRead

UFR_STATUS BlockInSectorWrite

UFR_STATUS LinearRead *1
UFR_STATUS LinearWrite *1
UFR_STATUS LinRowRead *1
UFR_STATUS LinearFormatCard

UFR_STATUS SectorTrailerWrite

UFR_STATUS SectorTrailerWriteUnsafe

UFR_STATUS ValueBlockRead

UFR_STATUS ValueBlockWrite

Digital Logic, www.d-logic.net Page 50

http://www.d-logic.net/

API revision: 2.1

UFR_STATUS ValueBlockInSectorRead

UFR_STATUS ValueBlockInSectorWrite

UFR_STATUS ValueBlockIncrement

UFR_STATUS ValueBlockDecrement

UFR_STATUS ValueBlockInSectorIncrement

UFR_STATUS ValueBlockInSectorDecrement

“*1” – function can be used with NFC T2T card types (i.e. all varieties of the Mifare

Ultralight, NTAG 203, NTAG 21x, Mikron MIK640D and other NFC_T2T_GENERIC tags).

If you want to use the following functions: ValueBlockRead(), ValueBlockWrite(),
ValueBlockInSectorRead(), ValueBlockInSectorWrite(), ValueBlockIncrement(),
ValueBlockDecrement(), ValueBlockInSectorIncrement() and ValueBlockInSectorDecrement(),
then you need to change access bits for data blocks in chosen sector to one of the “value blocks
application” access condition. You can do this using uFR API function SectorTrailerWrite().

BlockRead

Function description

Read particular block using absolute Block address.

Function declaration (C language)

UFR_STATUS BlockRead(uint8_t *data,

 uint8_t block_address,

 uint8_t auth_mode,

 uint8_t key_index);

UFR_STATUS BlockRead_AKM1(uint8_t *data,

 uint8_t block_address,

 uint8_t auth_mode);

UFR_STATUS BlockRead_AKM2(uint8_t *data,

 uint8_t block_address,

 uint8_t auth_mode);

UFR_STATUS BlockRead_PK(uint8_t *data,

 uint8_t block_address,

 uint8_t auth_mode,

 const uint8_t *key);

Parameters
data Pointer to array of bytes containing data
block_address Absolute block address

auth_mode

For Mifare Classic tags defines whether to perform authentication with key
A or key B:
use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61

Digital Logic, www.d-logic.net Page 51

http://www.d-logic.net/

API revision: 2.1

For NTAG 21x, Ultralight EV1 and other T2T tags supporting
PWD_AUTH value 0x61 means “use PWD_AUTH“ with BlockRead() or
BlockRead_PK() functions. Value 0x60 with BlockRead() or
BlockRead_PK() functions means “without PWD_AUTH“ and in that case
you can send for ucReaderKeyIndex or aucProvidedKey parameters
anything you want without influence on the result. For NTAG 21x, Ultralight
EV1 and other T2T tags supporting PWD_AUTH you can use _AKM1 or
_AKM2 function variants only without PWD_AUTH in any case of the valid
values (0x60 or 0x61) provided for this parameter.

key_index Index of reader’s key to be used (RK mode)
key Pointer to 6 byte array containing key bytes (PK mode)

When using this function with other card types, auth_mode, key_index and key parameters
are not relevant but they must take default values.

BlockWrite

Function description

Write particular block using absolute Block address.

Function declaration (C language)
UFR_STATUS BlockWrite(uint8_t *data,

 uint8_t block_address,

 uint8_t auth_mode,

 uint8_t key_index);

UFR_STATUS BlockWrite_AKM1(uint8_t *data,

 uint8_t block_address,

 uint8_t auth_mode);

UFR_STATUS BlockWrite_AKM2(uint8_t *data,

 uint8_t block_address,

 uint8_t auth_mode);

UFR_STATUS BlockWrite_PK(uint8_t *data,

 uint8_t block_address,

 uint8_t auth_mode, const uint8_t *key);

Parameters
data Pointer to array of bytes containing data
block_address Absolute block address

auth_mode

For Mifare Classic tags defines whether to perform authentication with key A
or key B:
use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61
For NTAG 21x, Ultralight EV1 and other T2T tags supporting PWD_AUTH

Digital Logic, www.d-logic.net Page 52

http://www.d-logic.net/

API revision: 2.1

value 0x61 means “use PWD_AUTH“ with BlockWrite() or BlockWrite_PK()
functions. Value 0x60 with BlockWrite() or BlockWrite_PK() functions means
“without PWD_AUTH“ and in that case you can send for ucReaderKeyIndex or
aucProvidedKey parameters anything you want without influence on the result.
For NTAG 21x, Ultralight EV1 and other T2T tags supporting PWD_AUTH you
can use _AKM1 or _AKM2 function variants only without PWD_AUTH in any
case of the valid values (0x60 or 0x61) provided for this parameter.

key_index Index of reader’s key to be used (RK mode)
key Pointer to 6 byte array containing key bytes (PK mode)

When using this function with other card types, auth_mode, key_index and key parameters
are not relevant but they must take default values.

BlockInSectorRead

Function description

Read particular block using relative Block in Sector address.
Function declaration (C language)
UFR_STATUS BlockInSectorRead(uint8_t *data, uint8_t sector_address,

uint8_t block_in_sector_address,

uint8_t auth_mode, uint8_t key_index);

UFR_STATUS BlockInSectorRead_AKM1(uint8_t *data, uint8_t

sector_address,

uint8_t block_in_sector_address,

uint8_t auth_mode);

UFR_STATUS BlockInSectorRead_AKM2(uint8_t *data, uint8_t

sector_address,

uint8_t block_in_sector_address,

uint8_t auth_mode);

UFR_STATUS BlockInSectorRead_PK(uint8_t *data,uint8_t sector_address,

uint8_t block_in_sector_address,

uint8_t auth_mode,

const uint8_t *key);

Parameters
data Pointer to array of bytes containing data
sector_address Absolute Sector address
block_in_sector_address Block address in Sector

auth_mode

For Mifare Classic tags defines whether to perform authentication
with key A or key B:
use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61

Digital Logic, www.d-logic.net Page 53

http://www.d-logic.net/

API revision: 2.1

For NTAG 21x, Ultralight EV1 and other T2T tags supporting
PWD_AUTH value 0x61 means “use PWD_AUTH“ with
BlockInSectorRead() or BlockInSectorRead_PK() functions. Value
0x60 with BlockInSectorRead() or BlockInSectorRead_PK()
functions means “without PWD_AUTH“ and in that case you can
send for ucReaderKeyIndex or aucProvidedKey parameters
anything you want without influence on the result. For NTAG 21x,
Ultralight EV1 and other T2T tags supporting PWD_AUTH you can
use _AKM1 or _AKM2 function variants only without PWD_AUTH
in any case of the valid values (0x60 or 0x61) provided for this
parameter.

key_index Index of reader’s key to be used (RK mode)
key Pointer to 6 byte array containing key bytes (PK mode)

This function can’t be used with card types other than Mifare Classic.

BlockInSectorWrite

Function description

Write particular block using relative Block in Sector address.
Function declaration (C language)
UFR_STATUS BlockInSectorWrite(uint8_t *data, uint8_t sector_address,

uint8_t block_in_sector_address,

uint8_t auth_mode, uint8_t key_index);

UFR_STATUS BlockInSectorWrite_AKM1(uint8_t *data,

uint8_t sector_address,

uint8_t block_in_sector_address,

uint8_t auth_mode);

UFR_STATUS BlockInSectorWrite_AKM2(uint8_t *data,

uint8_t sector_address,

uint8_t block_in_sector_address,

uint8_t auth_mode);

UFR_STATUS BlockInSectorWrite_PK(uint8_t *data, uint8_t sector_address,

uint8_t block_in_sector_address,

uint8_t auth_mode, const uint8_t *key);

Parameters
data Pointer to array of bytes containing data
sector_address Absolute Sector address
block_in_sector_address Block address in Sector

auth_mode
For Mifare Classic tags defines whether to perform authentication
with key A or key B:

Digital Logic, www.d-logic.net Page 54

http://www.d-logic.net/

API revision: 2.1

use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61
For NTAG 21x, Ultralight EV1 and other T2T tags supporting
PWD_AUTH value 0x61 means “use PWD_AUTH“ with
BlockInSectorWrite() or BlockInSectorWrite_PK() functions. Value
0x60 with BlockInSectorWrite() or BlockInSectorWrite_PK() functions
means “without PWD_AUTH“ and in that case you can send for
ucReaderKeyIndex or aucProvidedKey parameters anything you
want without influence on the result. For NTAG 21x, Ultralight EV1
and other T2T tags supporting PWD_AUTH you can use _AKM1 or
_AKM2 function variants only without PWD_AUTH in any case of
the valid values (0x60 or 0x61) provided for this parameter.

key_index Index of reader’s key to be used (RK mode)
key Pointer to 6 byte array containing key bytes (PK mode)

This function can’t be used with card types other than Mifare Classic.

LinearRead

Function description

Group of functions for linear reading in uFR firmware utilise FAST_READ ISO 14443-3 command
with NTAG21x and Mifare Ultralight EV1 tags.
Function declaration (C language)
UFR_STATUS LinearRead(uint8_t *Data, uint16_t linear_address,

uint16_t length, uint16_t *bytes_returned,

uint8_t auth_mode, uint8_t key_index);

UFR_STATUS LinearRead_AKM1(uint8_t *Data, uint16_t linear_address,

uint16_t length, uint16_t *bytes_returned, uint8_t

auth_mode);

UFR_STATUS LinearRead_AKM2(uint8_t *Data, uint16_t linear_address,

uint16_t length, uint16_t *bytes_returned, uint8_t

auth_mode);

UFR_STATUS LinearRead_PK(uint8_t *Data, uint16_t linear_address,

uint16_t length, uint16_t *bytes_returned,

uint8_t auth_mode, const uint8_t *key);

Parameters
data Pointer to array of bytes containing data
linear_address Address of byte – where to start reading
length Length of data – how many bytes to read
bytes_returned Pointer to variable holding how many bytes are returned

Digital Logic, www.d-logic.net Page 55

http://www.d-logic.net/

API revision: 2.1

auth_mode

For Mifare Classic tags defines whether to perform authentication with
key A or key B:
use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61
For NTAG 21x, Ultralight EV1 and other T2T tags supporting
PWD_AUTH value 0x61 means “use PWD_AUTH“ with LinearRead() or
LinearRead_PK() functions. Value 0x60 with LinearRead() or
LinearRead_PK() functions means “without PWD_AUTH“ and in that
case you can send for ucReaderKeyIndex or aucProvidedKey
parameters anything you want without influence on the result. For NTAG
21x, Ultralight EV1 and other T2T tags supporting PWD_AUTH you can
use _AKM1 or _AKM2 function variants only without PWD_AUTH in any
case of the valid values (0x60 or 0x61) provided for this parameter.

key_index Index of reader’s key to be used (RK mode)
key Pointer to 6 byte array containing key bytes (PK mode)

When using this functions with other card types, auth_mode, key_index and key parameters
are not relevant but must take default values.

LinearWrite

Function description
These functions are used for writing data to the card using emulation of the linear address space.
The method for proving authenticity is determined by the suffix in the functions names.

Function declaration (C language)

Digital Logic, www.d-logic.net Page 56

http://www.d-logic.net/

API revision: 2.1

UFR_STATUS LinearWrite(uint8_t *Data,

 uint16_t linear_address,

 uint16_t length,

 uint16_t *bytes_returned,

 uint8_t auth_mode,
 uint8_t key_index);

UFR_STATUS LinearWrite_AKM1(uint8_t *Data,

 uint16_t linear_address,

 uint16_t length,

 uint16_t *bytes_returned,

 uint8_t auth_mode);

UFR_STATUS LinearWrite_AKM2(uint8_t *Data,

 uint16_t linear_address,

 uint16_t length,

 uint16_t *bytes_returned,

 uint8_t auth_mode);

UFR_STATUS LinearWrite_PK(uint8_t *Data,

 uint16_t linear_address,

 uint16_t length,

 uint16_t *bytes_returned,

 uint8_t auth_mode,

 const uint8_t *key);
Parameters
data Pointer to array of bytes containing data
linear_address Address of byte – where to start writing
length Length of data – how many bytes to write
bytes_returned Pointer to variable holding how many bytes are returned

auth_mode

For Mifare Classic tags defines whether to perform authentication with key A
or key B:
use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61
For NTAG 21x, Ultralight EV1 and other T2T tags supporting PWD_AUTH
value 0x61 means “use PWD_AUTH“ with LinearWrite() or LinearWrite_PK()
functions. Value 0x60 with LinearWrite() or LinearWrite_PK() functions means
“without PWD_AUTH“ and in that case you can send for ucReaderKeyIndex or
aucProvidedKey parameters anything you want without influence on the result.
For NTAG 21x, Ultralight EV1 and other T2T tags supporting PWD_AUTH you
can use _AKM1 or _AKM2 function variants only without PWD_AUTH in any
case of the valid values (0x60 or 0x61) provided for this parameter.

key_index Index of reader’s key to be used (RK mode)
key Pointer to 6 byte array containing key bytes (PK mode)

When using this function with other card types, auth_mode, key_index and key parameters
are not relevant but must take default values.

Digital Logic, www.d-logic.net Page 57

http://www.d-logic.net/

API revision: 2.1

LinRowRead

Function description

Read Linear data Address Space. On the contrary of LinearRead functions, this functions read
whole card including trailer blocks and manufacturer block.
This function is useful when making “dump” of whole card.
Group of functions for linear reading in uFR firmware utilise FAST_READ ISO 14443-3 command
with NTAG21x and Mifare Ultralight EV1 tags.
Function declaration (C language)
UFR_STATUS LinRowRead(uint8_t *Data,

 uint16_t linRow_address,

 uint16_t length,

 uint16_t *bytes_returned,

 uint8_t auth_mode,

 uint8_t key_index);

UFR_STATUS LinRowRead_AKM1(uint8_t *Data,

 uint16_t linRow_address,

 uint16_t length,

 uint16_t *bytes_returned,

 uint8_t auth_mode);

UFR_STATUS LinRowRead_AKM2(uint8_t *Data,

 uint16_t linRow_address,

 uint16_t length,

 uint16_t *bytes_returned,

 uint8_t auth_mode);

UFR_STATUS LinRowRead_PK(uint8_t *Data,

 uint16_t linRow_address,

 uint16_t length,

Digital Logic, www.d-logic.net Page 58

http://www.d-logic.net/

API revision: 2.1

 uint16_t *bytes_returned,

 uint8_t auth_mode,

 const uint8_t *key);

Parameters
data Pointer to array of bytes containing data
linear_address Address of byte – where to start reading
length Length of data – how many bytes to read
bytes_returned Pointer to variable holding how many bytes are returned

auth_mode

For Mifare Classic tags defines whether to perform authentication with key A
or key B:
use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61
For NTAG 21x, Ultralight EV1 and other T2T tags supporting PWD_AUTH
value 0x61 means “use PWD_AUTH“ with LinRowRead() or
LinRowRead_PK() functions. Value 0x60 with LinRowRead() or
LinRowRead_PK() functions means “without PWD_AUTH“ and in that case
you can send for ucReaderKeyIndex or aucProvidedKey parameters anything
you want without influence on the result. For NTAG 21x, Ultralight EV1 and
other T2T tags supporting PWD_AUTH you can use _AKM1 or _AKM2
function variants only without PWD_AUTH in any case of the valid values
(0x60 or 0x61) provided for this parameter.

key_index Index of reader’s key to be used (RK mode)
key Pointer to 6 byte array containing key bytes (PK mode)

When using this function with other card types, auth_mode, key_index and key parameters
are not relevant but they must take default values.

LinearFormatCard

Function description

This function is specific to Mifare Classic cards only. It performs “Format card” operation - write
new Sector Trailer values on whole card at once. It writes following data:
KeyA, Block Access Bits, Trailer Access Bits, GeneralPurposeByte(GPB), KeyB, same as
construction of Sector Trailer.
Bytes 0 –

5

Bytes 6 - 8 Byte 9 Bytes 10 - 15

KeyA Block Access &

Trailer Access Bits

GPB KeyB

For more information, please refer to Mifare Classic Keys and Access Conditions in this document.

Digital Logic, www.d-logic.net Page 59

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS LinearFormatCard(const uint8_t *new_key_A,

 uint8_t blocks_access_bits,

 uint8_t sector_trailers_access_bits,

 uint8_t sector_trailers_byte9,

 const uint8_t *new_key_B,

 uint8_t *lpucSectorsFormatted,

 uint8_t auth_mode,

 uint8_t key_index);

UFR_STATUS LinearFormatCard_AKM1(const uint8_t *new_key_A,

 uint8_t blocks_access_bits,

 uint8_t sector_trailers_access_bits,

 uint8_t sector_trailers_byte9,

 const uint8_t *new_key_B,

 uint8_t *lpucSectorsFormatted,

 uint8_t auth_mode);

UFR_STATUS LinearFormatCard_AKM2(const uint8_t *new_key_A,

 uint8_t blocks_access_bits,

 uint8_t sector_trailers_access_bits,

 uint8_t sector_trailers_byte9,

 const uint8_t *new_key_B,

 uint8_t *lpucSectorsFormatted,

 uint8_t auth_mode);

UFR_STATUS LinearFormatCard_PK(const uint8_t *new_key_A,

 uint8_t blocks_access_bits,

 uint8_t sector_trailers_access_bits,

 uint8_t sector_trailers_byte9,

 const uint8_t *new_key_B,

 uint8_t *lpucSectorsFormatted,

 uint8_t auth_mode,

 const uint8_t *key);

These functions are used for new keys A and B writing as well as access bits in the trailers of all
card sectors. Ninth bit setting is enabled. The same value is set for the entire card. If you need to
prove authenticity on the base of previous keys, these functions are suitable to initialize the new
card or re-initialize the card with same keys and access rights for all sectors.
Parameters
new_key_A Pointer on 6 bytes array containing a new KeyA
blocks_access_bits Block Access permissions bits. Values 0 to 7
sector_trailers_access_bits Sector Trailer Access permissions bits. Values 0 to 7
sector_trailers_byte9 GPB value
new_key_B Pointer on 6 bytes array containing a new KeyA

lpucSectorsFormatted
Pointer to variable holding return value how many sectors are
successfully formatted

Digital Logic, www.d-logic.net Page 60

http://www.d-logic.net/

API revision: 2.1

auth_mode

Defines whether to perform authentication with key A or key B:
use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61

key_index Index of reader’s key to be used (RK mode)
key Pointer to 6 byte array containing key bytes (PK mode)

This function can’t be used with other card types except Mifare Classic.

GetCardSize

Function description
Function returns size of user data space on the card (LinearSize), and size of total data space on
the card (RawSize). The user data space is accessed via functions LinearWrite and LinearRead.
Total data space is accessed via functions LinRowWrite and LinRowRead. For example Mifare
Classic 1K card have 752 bytes of user data space (sector trailers and block 0 are not included),
and 1024 bytes of total data space.

Function declaration (C language)
UFR_STATUS GetCardSize(uint32_t *lpulLinearSize,

 uint32_t *lpulRawSize);

Parameters

lpulLinearSize pointer to variable which contain size of user data space

lpulRawSize pointer to variable which contain size of total data space

SectorTrailerWrite

Function description

This function is specific to Mifare Classic cards only. It writes new Sector Trailer value at one
Sector Trailer. It writes following data:
KeyA, Block Access Bits, Trailer Access Bits, GeneralPurposeByte(GPB), KeyB, same as
construction of Sector Trailer.

Digital Logic, www.d-logic.net Page 61

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS SectorTrailerWrite(uint8_t addressing_mode,

 uint8_t address,

 const uint8_t *new_key_A,

 uint8_t block0_access_bits,

 uint8_t block1_access_bits,

 uint8_t block2_access_bits,

 uint8_t sector_trailers_access_bits,

 uint8_t sector_trailers_byte9,

 const uint8_t *new_key_B,

 uint8_t auth_mode,

 uint8_t key_index);

UFR_STATUS SectorTrailerWrite_AKM1(uint8_t addressing_mode,

 uint8_t address,

 const uint8_t *new_key_A,

 uint8_t block0_access_bits,

 uint8_t block1_access_bits,

 uint8_t block2_access_bits,

 uint8_t sector_trailers_access_bits,

 uint8_t sector_trailers_byte9,

 const uint8_t *new_key_B,

 uint8_t auth_mode);

UFR_STATUS SectorTrailerWrite_AKM2(uint8_t addressing_mode,

 uint8_t address,

 const uint8_t *new_key_A,

 uint8_t block0_access_bits,

 uint8_t block1_access_bits,

 uint8_t block2_access_bits,

 uint8_t sector_trailers_access_bits,

 uint8_t sector_trailers_byte9,

 const uint8_t *new_key_B,

 uint8_t auth_mode);

UFR_STATUS SectorTrailerWrite_PK(uint8_t addressing_mode,

 uint8_t address,

 const uint8_t *new_key_A,

 uint8_t block0_access_bits,

 uint8_t block1_access_bits,

 uint8_t block2_access_bits,

 uint8_t sector_trailers_access_bits,

 uint8_t sector_trailers_byte9,

 const uint8_t *new_key_B,

 uint8_t auth_mode,

 const uint8_t *key);

Parameters

Digital Logic, www.d-logic.net Page 62

http://www.d-logic.net/

API revision: 2.1

addressing_mode Defines if Absolute (0) or Relative (1) Block Addressing mode is
used

address Address of Trailer according to addressing_mode
new_key_A Pointer on 6 bytes array containing a new KeyA
block0_access_bits Access Permissions Bits for Block 0. Values 0 to 7
block1_access_bits Access Permissions Bits for Block 1. Values 0 to 7
block2_access_bits Access Permissions Bits for Block 2. Values 0 to 7
sector_trailers_access_bits Sector Trailer Access permissions bits. Values 0 to 7
sector_trailers_byte9 GPB value
new_key_B Pointer on 6 bytes array containing a new KeyB

auth_mode

Defines whether to perform authentication with key A or key B:
use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61

key_index Index of reader’s key to be used (RK mode)
key Pointer to 6 byte array containing key bytes (PK mode)

This function can’t be used with other card types except Mifare Classic.
For “Block Access Bits” please refer to Mifare Classic Keys and Access Conditions in this document.
For Mifare Classic 4K (MF1S70), in higher addresses range (Sectors 31 - 39), where one sector
has 16 blocks, block0_access_bits corresponds to blocks 0-4, block1_access_bits

corresponds to blocks 5-9 and block2_access_bits corresponds to blocks 10-15.

SectorTrailerWriteUnsafe

Function description

This function is specific to Mifare Classic cards only. It writes new Sector Trailer value at one
Sector Trailer. It writes following data:
KeyA, Block Access Bits, Trailer Access Bits, GeneralPurposeByte(GPB), KeyB, same as
construction of Sector Trailer.
Difference between this function and SectorTrailerWrite is :

● SectorTrailerWrite will check parameters and “safely” write them into trailer, non valid
values will not be written

● SectorTrailerWriteUnsafe writes array of 16 bytes as raw binary trailer representation,
any value can be written.

USE THIS FUNCTION WITH CAUTION, WRONG VALUES CAN DESTROY CARD!

Digital Logic, www.d-logic.net Page 63

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)

UFR_STATUS SectorTrailerWriteUnsafe(uint8_t addressing_mode,

 uint8_t address,

 uint8_t *sector_trailer,

 uint8_t auth_mode,

 uint8_t key_index);

UFR_STATUS SectorTrailerWriteUnsafe_AKM1(uint8_t addressing_mode,

 uint8_t address,

 uint8_t *sector_trailer,

 uint8_t auth_mode);

UFR_STATUS SectorTrailerWriteUnsafe_AKM2(uint8_t addressing_mode,

 uint8_t address,

 uint8_t *sector_trailer,

 uint8_t auth_mode);

UFR_STATUS SectorTrailerWriteUnsafe_PK(uint8_t addressing_mode,

 uint8_t address,

 uint8_t *sector_trailer,

 uint8_t auth_mode,

 const uint8_t *key);

Parameters
addressing_mode Defines if Absolute (0) or Relative (1) Block Addressing mode is used
address Address of Trailer according to addressing_mode
sector_trailers Pointer to 16 byte array as binary representation of Sector Trailer

auth_mode

Defines whether to perform authentication with key A or key B:
use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61

key_index Index of reader’s key to be used (RK mode)
key Pointer to 6 byte array containing key bytes (PK mode)

This function can’t be used with other card types except Mifare Classic.

ValueBlockRead

Function description

Read particular Value block using absolute Block address. This function uses Mifare Classic
specific mechanism of reading value which is stored into whole block. Value blocks have a fixed
data format which permits error detection and correction and a backup management. Value is a
signed 4-byte value and it is stored three times, twice non-inverted and once inverted. Negative
numbers are stored in standard 2's complement format. For more info, please refer to Mifare
Classic documentation.

Digital Logic, www.d-logic.net Page 64

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)

UFR_STATUS ValueBlockRead(int32_t *value,

 uint8_t *value_addr,

 uint8_t block_address,

 uint8_t auth_mode,

 uint8_t key_index);

UFR_STATUS ValueBlockRead_AKM1(int32_t *value,

 uint8_t *value_addr,

 uint8_t block_address,

 uint8_t auth_mode);

UFR_STATUS ValueBlockRead_AKM2(int32_t *value,

 uint8_t *value_addr,

 uint8_t block_address,

 uint8_t auth_mode);

UFR_STATUS ValueBlockRead_PK(int32_t *value,

 uint8_t *value_addr,

 uint8_t block_address,

 uint8_t auth_mode,

 const uint8_t *key);

Parameters
value Pointer to variable where retrieved value will be stored

Value_addr

Signifies a 1-byte address, which can be used to save the storage address of
a block, when implementing a powerful backup management. For more info,
please refer to Mifare Classic documentation.

block_address Absolute block address

auth_mode

Defines whether to perform authentication with key A or key B:
use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61

key_index Index of reader’s key to be used (RK mode)
key Pointer to 6 byte array containing key bytes (PK mode)
This functions can’t be used with other card types except Mifare Classic.

ValueBlockWrite

Function description

Write particular Value block using absolute Block address. This function uses Mifare Classic
specific mechanism of writing value which is stored into whole block. Value blocks have a fixed
data format which permits error detection and correction and a backup management. Value is a
signed 4-byte value and it is stored three times, twice non-inverted and once inverted. Negative
numbers are stored in standard 2's complement format. For more info, please refer to Mifare
Classic documentation.

Digital Logic, www.d-logic.net Page 65

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS ValueBlockWrite(int32_t *value,

 uint8_t *value_addr,

 uint8_t block_address,

 uint8_t auth_mode,

 uint8_t key_index);

UFR_STATUS ValueBlockWrite_AKM1(int32_t *value,

 uint8_t *value_addr,

 uint8_t block_address,

 uint8_t auth_mode);

UFR_STATUS ValueBlockWrite_AKM2(int32_t *value,

 uint8_t *value_addr,

 uint8_t block_address,

 uint8_t auth_mode);

UFR_STATUS ValueBlockWrite_PK(int32_t *value,

 uint8_t *value_addr,

 uint8_t block_address,

 uint8_t auth_mode,

 const uint8_t *key);

Parameters

value Pointer to value to be stored

Value_addr

Signifies a 1-byte address, which can be used to save the storage address of a
block, when implementing a powerful backup management. For more info, please
refer to Mifare Classic documentation.

block_address Absolute block address

auth_mode

Defines whether to perform authentication with key A or key B:
use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61

key_index Index of reader’s key to be used (RK mode)
key Pointer to 6 byte array containing key bytes (PK mode)

This function can’t be used with other card types except Mifare Classic.

ValueBlockInSectorRead

Function description

Read particular Value block using absolute Block address. This function uses Mifare Classic
specific mechanism of reading value which is stored into whole block. Value blocks have a fixed
data format which permits error detection and correction and a backup management. Value is a
signed 4-byte value and it is stored three times, twice non-inverted and once inverted. Negative
numbers are stored in standard 2's complement format. For more info, please refer to Mifare
Classic documentation.

Digital Logic, www.d-logic.net Page 66

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS ValueBlockInSectorRead(int32_t *value,

 uint8_t *value_addr,

 uint8_t sector_address,

 uint8_t block_in_sector_address,

 uint8_t auth_mode,

 uint8_t key_index);

UFR_STATUS ValueBlockInSectorRead_AKM1(int32_t *value,

 uint8_t *value_addr,

 uint8_t sector_address,

 uint8_t block_in_sector_address,

 uint8_t auth_mode);

UFR_STATUS ValueBlockInSectorRead_AKM2(int32_t *value,

 uint8_t *value_addr,

 uint8_t sector_address,

 uint8_t block_in_sector_address,

 uint8_t auth_mode);

UFR_STATUS ValueBlockInSectorRead_PK(int32_t *value,

 uint8_t *value_addr,

 uint8_t sector_address,

 uint8_t block_in_sector_address,

 uint8_t auth_mode,

 const uint8_t *key);

Parameters

value
Pointer to variable where retrieved value will
be stored

Value_addr

Signifies a 1-byte address, which can be used
to save the storage address of a block, when
implementing a powerful backup
management. For more info, please refer to
Mifare Classic documentation.

sector_address Absolute Sector address
block_in_sector_address Block address in Sector

auth_mode

Authentication mode :
use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61

key_index Index of reader’s key to be used (RK mode)

key
Pointer to 6 byte array containing key bytes
(PK mode)

This function can’t be used with other card types except Mifare Classic.

Digital Logic, www.d-logic.net Page 67

http://www.d-logic.net/

API revision: 2.1

ValueBlockInSectorWrite

Function description

Write particular Value block using absolute Block address. This function uses Mifare Classic
specific mechanism of writing value which is stored into whole block. Value blocks have a fixed
data format which permits error detection and correction and a backup management. Value is a
signed 4-byte value and it is stored three times, twice non-inverted and once inverted. Negative
numbers are stored in standard 2's complement format. For more info, please refer to Mifare
Classic documentation.
Function declaration (C language)
UFR_STATUS ValueBlockInSectorWrite(int32_t value,

 uint8_t value_addr,

 uint8_t sector_address,

 uint8_t block_in_sector_address,

 uint8_t auth_mode,

 uint8_t key_index);

UFR_STATUS ValueBlockInSectorWrite_AKM1(int32_t value,

 uint8_t value_addr,

 uint8_t sector_address,

 uint8_t block_in_sector_address,

 uint8_t auth_mode);

UFR_STATUS ValueBlockInSectorWrite_AKM2(int32_t value,

 uint8_t value_addr,

 uint8_t sector_address,

 uint8_t block_in_sector_address,

 uint8_t auth_mode);

UFR_STATUS ValueBlockInSectorWrite_PK(int32_t value,

 uint8_t value_addr,

 uint8_t sector_address,

 uint8_t block_in_sector_address,

 uint8_t auth_mode,

 const uint8_t *key);

Parameters
value Pointer to value to be stored

Value_addr

Signifies a 1-byte address, which can be used
to save the storage address of a block, when
implementing a powerful backup management.
For more info, please refer to Mifare Classic
documentation.

sector_address Absolute Sector address
block_in_sector_address Block address in Sector

Digital Logic, www.d-logic.net Page 68

http://www.d-logic.net/

API revision: 2.1

auth_mode

Authentication mode :
use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61

key_index Index of reader’s key to be used (RK mode)

key
Pointer to 6 byte array containing key bytes
(PK mode)

This function can’t be used with other card types except Mifare Classic.

ValueBlockIncrement

Function description

Increments particular Value block with specified value using absolute Block address.

Function declaration (C language)
UFR_STATUS ValueBlockIncrement(int32_t increment_value,

 uint8_t block_address,

 uint8_t auth_mode,

 uint8_t key_index);

UFR_STATUS ValueBlockIncrement_AKM1(int32_t increment_value,

 uint8_t block_address,

 uint8_t auth_mode;

UFR_STATUS ValueBlockIncrement_AKM2(int32_t increment_value,

 uint8_t block_address,

 uint8_t auth_mode);

UFR_STATUS ValueBlockIncrement_PK(int32_t increment_value,

 uint8_t block_address,

 uint8_t auth_mode,

 const uint8_t *key);

Parameters

increment_value
value showing how much initial block value will be
incremented

block_address Absolute block address

auth_mode

Authentication mode :
use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61

key_index Index of reader’s key to be used (RK mode)
key Pointer to 6 byte array containing key bytes (PK mode)

This function can’t be used with other card types except Mifare Classic.

Digital Logic, www.d-logic.net Page 69

http://www.d-logic.net/

API revision: 2.1

ValueBlockDecrement

Function description

Decrements particular Value block with specified value using absolute Block address.

Function declaration (C language)
UFR_STATUS ValueBlockDecrement(int32_t decrement_value,

 uint8_t block_address,

 uint8_t auth_mode,

 uint8_t key_index);

UFR_STATUS ValueBlockDecrement_AKM1(int32_t decrement_value,

 uint8_t block_address,

 uint8_t auth_mode;

UFR_STATUS ValueBlockDecrement_AKM2(int32_t decrement_value,

 uint8_t block_address,

 uint8_t auth_mode);

UFR_STATUS ValueBlockDecrement_PK(int32_t decrement_value,

 uint8_t block_address,

 uint8_t auth_mode,

 const uint8_t *key);

Parameters

increment_value
value showing how much initial block value will be
decremented

block_address Absolute block address

auth_mode

Authentication mode :
use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61

key_index Index of reader’s key to be used (RK mode)
key Pointer to 6 byte array containing key bytes (PK mode)

This function can’t be used with other card types except Mifare Classic.

ValueBlockInSectorIncrement

Function description

Increments particular Value block with specified value using Block in Sector address.

Digital Logic, www.d-logic.net Page 70

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS

ValueBlockInSectorIncrement(int32_t increment_value,

 uint8_t sector_address,

 uint8_t block_in_sector_address,

 uint8_t auth_mode,

 uint8_t key_index);

UFR_STATUS

ValueBlockInSectorIncrement_AKM1(int32_t increment_value,

 uint8_t sector_address,

 uint8_t block_in_sector_address,

 uint8_t auth_mode);

UFR_STATUS

ValueBlockInSectorIncrement_AKM2(int32_t increment_value,

 uint8_t sector_address,

 uint8_t block_in_sector_address,

 uint8_t auth_mode);

UFR_STATUS

ValueBlockInSectorIncrement_PK(int32_t increment_value,

 uint8_t sector_address,

 uint8_t block_in_sector_address,

 uint8_t auth_mode,

 const uint8_t *key);

Parameters

increment_value
value showing how much initial block value will be
incremented

sector_address Absolute Sector address
block_in_sector_address Block address in Sector

auth_mode

Authentication mode :
use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61

key_index Index of reader’s key to be used (RK mode)

key
Pointer to 6 byte array containing key bytes (PK
mode)

This function can’t be used with other card types except Mifare Classic.

ValueBlockInSectorDecrement

Function description

Decrements particular Value block with specified value using Block in Sector address.

Digital Logic, www.d-logic.net Page 71

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS

ValueBlockInSectorDecrement(int32_t decrement_value,

 uint8_t sector_address,

 uint8_t block_in_sector_address,

 uint8_t auth_mode,

 uint8_t key_index);

UFR_STATUS

ValueBlockInSectorDecrement_AKM1(int32_t decrement_value,

 uint8_t sector_address,

 uint8_t block_in_sector_address,

 uint8_t auth_mode);

UFR_STATUS

ValueBlockInSectorDecrement_AKM2(int32_t decrement_value,

 uint8_t sector_address,

 uint8_t block_in_sector_address,

 uint8_t auth_mode);

UFR_STATUS

ValueBlockInSectorDecrement_PK(int32_t decrement_value,

 uint8_t sector_address,

 uint8_t block_in_sector_address,

 uint8_t auth_mode,

 const uint8_t *key);

Parameters

decrement_value
value showing how much initial block value will be
decremented

sector_address Absolute Sector address
block_in_sector_address Block address in Sector

auth_mode

Authentication mode :
use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61

key_index Index of reader’s key to be used (RK mode)

key
Pointer to 6 byte array containing key bytes (PK
mode)

This function can’t be used with other card types except Mifare Classic.

Digital Logic, www.d-logic.net Page 72

http://www.d-logic.net/

API revision: 2.1

Additional general functions for working with the cards

Functions that support NDEF records

get_ndef_record_count

Function description

Function returns the number of NDEF messages that have been read from the card, and number
of NDEF records, number of NDEF empty messages. Also, function returns array of bytes
containing number of messages pairs. First byte of pair is message ordinal, and second byte is
number of NDEF records in that message. Message ordinal starts from 1.

Function declaration (C language)

UFR_STATUS get_ndef_record_count(
uint8_t *ndef_message_cnt,
uint8_t *ndef_record_cnt,
uint8_t *ndef_record_array,
uint8_t *empty_ndef_message_cnt);

Parameters

ndef_message_cnt pointer to the variable containing number of
NDEF messages

ndef_record_cnt pointer to the variable containing number of
NDEF record

ndef_record_array pointer to the array of bytes containing pairs
(message ordinal – number of records)

empty_ndef_message_cnt pointer to the variable containing number of
empty messages

read_ndef_record

Function description
Function returns TNF, type of record, ID and payload from the NDEF record. NDEF record shall be
elected by the message ordinal and record ordinal in this message.

Digital Logic, www.d-logic.net Page 73

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS read_ndef_record(uint8_t message_nr,

uint8_t record_nr,
uint8_t *tnf,
uint8_t *type_record,
uint8_t *type_length,
uint8_t *id,
uint8_t *id_length,
uint8_t *payload,
uint32_t *payload_length);

Parameters

message_nr NDEF message ordinal (starts from 1)

record_nr NDEF record ordinal (in message)

tnf pointer to the variable containing TNF of
record

type_record pointer to array containing type of record

type_length pointer to the variable containing length of type
of record string

id pointer to array containing ID of record

id_length pointer to the variable containing length of ID
of record string

payload pointer to array containing payload of record

payload_length pointer to the variable containing length of
payload

write_ndef_record

Function description
Function adds a record to the end of message, if one or more records already exist in this
message. If current message is empty, then this empty record will be replaced with the record.
Parameters of function are: ordinal of message, TNF, type of record, ID, payload. Function also
returns pointer to the variable which reported that the card formatted for NDEF using (card does
not have a capability container, for example new Mifare Ultralight, or Mifare Classic card).

Digital Logic, www.d-logic.net Page 74

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS write_ndef_record(uint8_t message_nr,
 uint8_t *tnf,
 uint8_t *type_record,
 uint8_t *type_length,
 uint8_t *id,
 uint8_t *id_length,
 uint8_t *payload,
 uint32_t *payload_length,
 uint8_t *card_formated);

Parameters

message_nr NDEF message ordinal (starts from 1)

tnf pointer to variable containing TNF of record

type_record pointer to array containing type of record

type_length pointer to the variable containing length of type
of record string

id pointer to array containing ID of record

id_length pointer to the variable containing length of ID
of record string

payload pointer to array containing payload of record

payload_length pointer to the variable containing length of
payload

card_formated pointer to the variable which shows that the
card formatted for NDEF using.

write_ndef_record_mirroring

Function description
This function works the same as the write_ndef_record(), with the additional “UID and / or
NFC counter mirror” features support. NTAG 21x family of the devices offers these specific
features. For details about “ASCII mirror” features refer to
http://www.nxp.com/docs/en/data-sheet/NTAG213_215_216.pdf (in Rev. 3.2 from 2. June 2015,

Digital Logic, www.d-logic.net Page 75

http://www.d-logic.net/

API revision: 2.1

page 20) and http://www.nxp.com/docs/en/data-sheet/NTAG210_212.pdf (in Rev. 3.0 from 14.
March 2013, page 16).

Function declaration (C language)
UFR_STATUS write_ndef_record_mirroring(uint8_t message_nr,

uint8_t *tnf,

uint8_t *type_record,

uint8_t *type_length,

uint8_t *id,

uint8_t *id_length,

uint8_t *payload,

uint32_t *payload_length,

uint8_t *card_formated,

int use_uid_ascii_mirror,

int use_counter_ascii_mirror,

uint32_t payload_mirroring_pos);

Parameters

message_nr NDEF message ordinal (starts from 1)

tnf pointer to variable containing TNF of record

type_record pointer to array containing type of record

type_length pointer to the variable containing length of type of record string

id pointer to array containing ID of record

id_length pointer to the variable containing length of ID of record string

payload pointer to array containing payload of record

payload_length pointer to the variable containing length of payload

card_formated pointer to the variable which shows that the card formatted for NDEF
using.

use_uid_ascii_mirror if use_uid_ascii_mirror == 1 then “UID ASCII Mirror” feature
is in use.

if use_uid_ascii_mirror == 0 then “UID ASCII Mirror” feature
is switched off.

Digital Logic, www.d-logic.net Page 76

http://www.d-logic.net/

API revision: 2.1

use_counter_ascii_mirror if use_counter_ascii_mirror == 1 then “NFC counter ASCII
Mirror” feature is in use.

if use_counter_ascii_mirror == 0 then “NFC counter ASCII
Mirror” feature is switched off.

payload_mirroring_pos Defines the starting position of the “ASCII Mirror” in to the NDEF
record payload.

erase_last_ndef_record

Function description
Function deletes the last record of selected message. If message contains one record, then it will
be written empty message.

Function declaration (C language)
UFR_STATUS erase_last_ndef_record(uint8_t message_nr);

Parameter

message_nr NDEF message ordinal (starts form 1)

erase_all_ndef_records

Function description
Function deletes all records of message, then writes empty message.

Function declaration (C language)
UFR_STATUS erase_all_ndef_records(uint8_t message_nr);

Parameter

message_nr NDEF message ordinal (starts form 1)

ndef_card_initialization

Function description
Function prepares the card for NDEF using. Function writes Capability Container (CC) if
necessary, and writes empty message. If card is MIFARE CLASSIC or MIFARE PLUS, then

Digital Logic, www.d-logic.net Page 77

http://www.d-logic.net/

API revision: 2.1

function writes MAD (MIFARE Application Directory), and default keys and access bits for NDEF
using.

Function declaration (C language)
UFR_STATUS ndef_card_initialization(void);

ERROR CODES OF NDEF FUNCTIONS

UFR_WRONG_NDEF_CARD_FORMAT = 0x80
UFR_NDEF_MESSAGE_NOT_FOUND = 0x81
UFR_NDEF_UNSUPPORTED_CARD_TYPE = 0x82
UFR_NDEF_CARD_FORMAT_ERROR = 0x83
UFR_MAD_NOT_ENABLED = 0x84
UFR_MAD_VERSION_NOT_SUPPORTED = 0x85

Functions for configuration of asynchronously card ID sending
When the card put on the reader, then the string which contains card ID shall be sent. String
contains hexadecimal notation of card ID, after that is one mandatory suffix character. Before the
card ID may be one prefix character placed.

Example:

Card ID is 0xA103C256, prefix is 0x58 ('X'), suffix is 0x59 ('Y')

String is “XA103C256Y”

SetAsyncCardIdSendConfig

Function description
Function sets the parameters of card ID sending. Parameters are: prefix existing, prefix character,
suffix character, and baud rate for card ID sending.

Function declaration (C language)
UFR_STATUS SetAsyncCardIdSendConfig(uint8_t send_enable,
 uint8_t prefix_enable,
 uint8_t prefix,
 uint8_t suffix,
 uint32_t async_baud_rate);

Parameters

send_enable sending enable flag (0 – disabled, 1 – enabled)

prefix_enable prefix existing flag (0 – prefix don't exist, 1 – prefix exist)

Digital Logic, www.d-logic.net Page 78

http://www.d-logic.net/

API revision: 2.1

prefix prefix character

suffix suffix character

async_baud_rate • baud rate value (e.g. 9600)

GetAsyncCardIdSendConfig

Function description
Function returns the parameters of card ID sending.

Function declaration (C language)
UFR_STATUS GetAsyncCardIdSendConfig(uint8_t *send_enable,
 uint8_t *prefix_enable,
 uint8_t *prefix,
 uint8_t *suffix,
 uint32_t *async_baud_rate);

Parameters

send_enable pointer to the sending enable flag

prefix_enable pointer to the prefix existing flag

prefix pointer to the prefix variable

suffix pointer to the suffix variable

async_baud_rate pointer to the baud rate variable

Functions that works with Real Time Clock (RTC)
RTC embedded in uFR Advance device only.

GetReaderTime

Function description
Function returns 6 bytes array of uint8_t that represented current date and time into device's RTC.

• Byte 0 represent year (current year – 2000)

• Byte 1 represent month (1 – 12)

Digital Logic, www.d-logic.net Page 79

http://www.d-logic.net/

API revision: 2.1

• Byte 2 represent day of the month (1 – 31)

• Byte 3 represent hour (0 – 23)

• Byte 4 represent minute (0 – 59)

• Byte 5 represent second (0 – 59)

Function declaration (C language)
UFR_STATUS GetReaderTime(uint8_t *time);

Parameter

time pointer to the array containing current date and time representation

SetReaderTime

Function description
Function sets the date and time into device's RTC. Function requires the 8 bytes password entry
to set date and time. Date and time are represent into 6 bytes array in same way as in
GetReaderTime function. Factory password is “11111111” (0x31, 0x31, 0x31, 0x31, 0x31, 0x31,
0x31, 0x31).

Function declaration (C language)
UFR_STATUS SetReaderTime(uint8_t *password,

 uint8_t *time);

Parameters

password pointer to the 8 bytes array containing password

time pointer to the 6 bytes array containing date and time representation

ChangeReaderPassword

Function description
Function changes password for set date and time. Function's parameters are old password and
new password.

Digital Logic, www.d-logic.net Page 80

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS ChangeReaderPassword(uint8_t *old_password,
 uint8_t *new_password);

Parameters

old_password pointer to the 8 bytes array containing current password

new_password pointer to the 8 bytes array containing new password

Functions that works with EEPROM
EEPROM embedded in uFR Advance device only.

Range of user address is from 0 to 32750.

ReaderEepromRead

Function description
Function returns array of data read from EEPROM. Maximal length of array is 128 bytes.

Function declaration (C language)
UFR_STATUS ReaderEepromRead(uint8_t *data,
 uint32_t address,
 uint32_t size);

Parameters

data pointer to array containing data from EEPROM

address address of first data

size length of array

ReaderEepromWrite

Function description
Function writes array of data into EEPROM. Maximal length of array is 128 bytes. Function
requires password which length is 8 bytes. Factory password is “11111111” (0x31, 0x31, 0x31,
0x31, 0x31, 0x31, 0x31, 0x31).

Digital Logic, www.d-logic.net Page 81

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS ReaderEepromWrite(uint8_t *data,
 uint32_t address,
 uint32_t size,
 uint8_t *password);

Parameters

data pointer to array containing data

address address of first data

size length of array

password pointer to array containing password

Functions that works with Mifare Desfire Card (AES encryption in reader)
AES encryption and decryption is performed in the reader. AES keys are stored into reader.

uFR_int_WriteAesKey

Function description
Function writes AES key (16 bytes) into reader.

Function declaration (C language)
UFR_STATUS uFR_int_DesfireWriteAesKey(uint8_t aes_key_no,

 uint8_t *aes_key);

Parameters

aes_key_no ordinal number of AES key in the reader

aes_key pointer to 16 byte array containing the AES key

uFR_int_GetDesfireUid

uFR_int_GetDesfireUid_PK

Function description
Mifare Desfire EV1 card can be configured to use Random ID numbers instead Unique ID
numbers during anti-collision procedure. In this case card uses single anti-collision loop, and

Digital Logic, www.d-logic.net Page 82

http://www.d-logic.net/

API revision: 2.1

returns Random Number Tag 0x08 and 3 bytes Random Number (4 bytes Random ID). This
function returns Unique ID of card, if the Random ID is used.

Function declaration (C language)
UFR_STATUS uFR_int_GetDesfireUid(uint8_t aes_key_nr,

 uint32_t aid,

 uint8_t aid_key_nr,

 uint8_t *card_uid,

 uint8_t *card_uid_len,

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_GetDesfireUid_PK(uint8_t *aes_key_ext,

 uint32_t aid,

 uint8_t aid_key_nr,

 uint8_t *card_uid,

 uint8_t *card_uid_len,

 uint16_t *card_status,

 uint16_t *exec_time);

Parameters

aes_key_nr ordinal number of AES key in the reader

aes_key_ext pointer to 16 byte array containing the AES key

aid ID of application that uses this key (3 bytes long, 0x000000 for card master key)

aid_key_nr key number into application (0 for card master key or application master key)

card_uid pointer to array containing card UID

card_uid_len pointer to card UID length variable

card_status pointer to card error variable

exec_time function's execution time

uFR_int_DesfireFreeMem

Function description
Function returns the available bytes on the card.

Digital Logic, www.d-logic.net Page 83

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS uFR_int_DesfireFreeMem(uint32_t *free_mem_byte,

 uint16_t *card_status,

 uint16_t *exec_time);

Parameters

free_mem_byte pointer to free memory size variable

card_status pointer to card error variable

exec_time function's execution time

uFR_int_DesfireFormatCard

uFR_int_DesfireFormatCard_PK

Function description
Function releases all allocated user memory on the card. All applications will be deleted, also all
files within those applications will be deleted. Only the card master key, and card master key
settings will not be deleted. This operation requires authentication with the card master key.

Function declaration (C language)
UFR_STATUS uFR_int_DesfireFormatCard(uint8_t aes_key_nr,

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireFormatCard_PK(uint8_t *aes_key_ext,

 uint16_t *card_status,

 uint16_t *exec_time);

Parameters

aes_key_nr ordinal number of card master AES key in the reader

aes_key_ext pointer to 16 byte array containing the AES key

card_status pointer to card error variable

exec_time function's execution time

Digital Logic, www.d-logic.net Page 84

http://www.d-logic.net/

API revision: 2.1

uFR_int_DesfireSetConfiguration

uFR_int_DesfireSetConfiguration_PK

Function description
Function allows you to activate the Random ID option, and/or Format disable option.
If these options are activated, then they can not be returned to the factory setting (Random ID
disabled, Format card enabled). This operation requires authentication with the card master key.

Function declaration (C language)
UFR_STATUS uFR_int_DesfireSetConfiguration(uint8_t aes_key_nr,

 uint8_t random_uid,

 uint8_t format_disable,

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireSetConfiguration_PK(uint8_t *aes_key_ext,

 uint8_t random_uid,

 uint8_t format_disable,

 uint16_t *card_status,

 uint16_t *exec_time);

Parameters

aes_key_nr ordinal number of card master AES key in the reader

aes_key_ext pointer to 16 byte array containing the AES key

random_uid 0 – Random ID disabled, 1 – Random ID enabled

format_disable 0 – Format enabled, 1 – Format disabled

card_status pointer to card error variable

exec_time function's execution time

Digital Logic, www.d-logic.net Page 85

http://www.d-logic.net/

API revision: 2.1

uFR_int_DesfireGetKeySettings

uFR_int_DesfireGetKeySettings_PK

Function description
Function allows to get card master key and application master key configuration settings. In
addition it returns the maximum number of keys which can be stored within selected application.

Function declaration (C language)
UFR_STATUS uFR_int_DesfireGetKeySettings(uint8_t aes_key_nr,

 uint32_t aid,

 uint8_t *settings

 uint8_t *max_key_no,

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireGetKeySettings_PK(uint8_t *aes_key_ext,

 uint32_t aid,

 uint8_t *settings

 uint8_t *max_key_no,

 uint16_t *card_status,

 uint16_t *exec_time);

Parameters

aes_key_nr ordinal number of AES key in the reader

aes_key_ext pointer to 16 byte array containing the AES key

aid ID of application that uses this key (3 bytes long, 0x000000 for card master key)

settings pointer to settings variable

max_key_no maximum number of keys within selected application

card_status pointer to card error variable

exec_time function's execution time

Digital Logic, www.d-logic.net Page 86

http://www.d-logic.net/

API revision: 2.1

uFR_int_DesfireChangeKeySettings

uFR_int_DesfireChangeKeySettings_PK

Function description
Function allows to set card master key, and application master key configuration settings.

Function declaration (C language)
UFR_STATUS uFR_int_DesfireChangeKeySettings(uint8_t aes_key_nr,

 uint32_t aid,

 uint8_t settings,

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireChangeKeySettings_PK(uint8_t *aes_key_ext,

 uint32_t aid,

 uint8_t settings,

 uint16_t *card_status,

 uint16_t *exec_time);

Parameters

aes_key_nr ordinal number of AES key in the reader

aes_key_ext pointer to 16 byte array containing the AES key

aid ID of application that uses this key (3 bytes long, 0x000000 for card master key)

settings pointer to key settings variable

card_status pointer to card error variable

exec_time function's execution time

uFR_int_DesfireChangeAesKey

uFR_int_DesfireChangeAesKey_PK

uFR_int_DesfireChangeAesKey_A

Function description
Function allow to change any AES key on the card. Changing the card master key require current
card master key authentication. Authentication for the application keys changing depend on the
application master key settings (which key uses for authentication).

Digital Logic, www.d-logic.net Page 87

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS uFR_int_DesfireChangeAesKey(uint8_t aes_key_nr,

 uint32_t aid,

 uint8_t aid_key_nr_auth,

 uint8_t new_aes_key[16],

 uint8_t aid_key_no,

 uint8_t old_aes_key[16],

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireChangeAesKey_PK(uint8_t *aes_key_ext,

 uint32_t aid,

 uint8_t aid_key_nr_auth,

 uint8_t new_aes_key[16],

 uint8_t aid_key_no,

 uint8_t old_aes_key[16],

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireChangeAesKey_A(uint8_t aes_key_nr,

 uint32_t aid,

 uint8_t aid_key_no_auth,

 uint8_t new_aes_key_nr,

 uint8_t aid_key_no,

 uint8_t old_aes_key_nr,

 uint16_t *card_status,

 uint16_t *exec_time);

Parameters

aes_key_nr ordinal number of AES key in the reader

aes_key_ext pointer to 16 byte array containing the AES key

aid ID of application that uses this key (3 bytes long, 0x000000 for card master key)

aid_key_nr_auth key number into application which uses for authentication

new_aes_key[16] 16 bytes array that represent AES key

aid_key_no key number into application that will be changed

old_aes_key[16] 16 bytes array that represent current AES key that will be changed, if this is not
key by which is made authentication

Digital Logic, www.d-logic.net Page 88

http://www.d-logic.net/

API revision: 2.1

card_status pointer to card error variable

exec_time function's execution time

uFR_int_DesfireCreateAesApplication

uFR_int_DesfireCreateAesApplication_PK

uFR_int_DesfireCreateAesApplication_no_auth

Function description
Function allows to create new application on the card. Is the card master key authentication is
required, depend on the card master key settings. Maximal number of applications on the card is
28. Each application is linked to set of up 14 different user definable access keys.

Function declaration (C language)
UFR_STATUS uFR_int_DesfireCreateAesApplication(uint8_t aes_key_nr,

 uint32_t aid_nr,

 uint8_t setting,

 uint8_t max_key_no,

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireCreateAesApplication_PK(uint8_t *aes_key_ext,

 uint32_t aid_nr,

 uint8_t settings,

 uint8_t max_key_no,

 uint16_t

*card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireCreateAesApplication_no_auth(uint32_t aid_nr,

 uint8_t settings,

 uint8_t max_key_no,

 uint16_t

*card_status,

 uint16_t *exec_time);

Parameter

aes_key_nr ordinal number of card master AES key in the reader

aes_key_ext pointer to 16 byte array containing the AES key

Digital Logic, www.d-logic.net Page 89

http://www.d-logic.net/

API revision: 2.1

aid_nr ID of application that creates (3 bytes long 0x000000 to 0xFFFFFF)

settings application master key settings

max_key_no maximal number of keys into application

card_status pointer to card error variable

exec_time function's execution time

uFR_int_DesfireDeleteApplication

uFR_int_DesfireDeleteApplication_PK

Function description
Function allows to deactivate application on the card. Is the card master key authentication is
required, depend on the card master key settings. AID allocation is removed, but deleted memory
blocks can only recovered by using Format card function.

Function declaration (C language)
UFR_STATUS uFR_int_DesfireDeleteApplication(uint8_t aes_key_nr,

 uint32_t aid_nr,

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireDeleteApplication_PK(uint8_t *aes_key_ext,

 uint32_t aid_nr,

 uint16_t *card_status,

 uint16_t *exec_time);

Parameters

aes_key_nr ordinal number of card master AES key in the reader

aes_key_ext pointer to 16 byte array containing the AES key

aid_nr ID of application that deletes (3 bytes long 0x000000 to 0xFFFFFF)

card_status pointer to card error variable

Digital Logic, www.d-logic.net Page 90

http://www.d-logic.net/

API revision: 2.1

exec_time function's execution time

uFR_int_DesfireCreateStdDataFile

uFR_int_DesfireCreateStdDataFile_PK

uFR_int_DesfireCreateStdDataFile_no_auth

Function description
Function allows to create file for the storage unformatted user data within existing application on
the card. Maximal number of files into application is 32. The file will be created in the currently
selected application. Is the application master key authentication is required, depend on the
application master key settings.
Communication settings define communication mode between reader and card. The
communication modes are:
- plain communication communication settings value is 0x00
- plain communication secured by MACing communication settings value is 0x01
- fully enciphered communication communication settings value is 0x11
Access rights for read, write, read&write and changing, references certain key within application's
keys (0 – 13). If value is 14, this means free access, independent of previous authentication. If
value is 15, this means deny access (for example if write access is 15 then the file type is read
only).

Digital Logic, www.d-logic.net Page 91

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS uFR_int_DesfireCreateStdDataFile(

 uint8_t aes_key_nr,

 uint32_t aid,

 uint8_t file_id,

 uint32_t file_size,

 uint8_t read_key_no,

 uint8_t write_key_no,

 uint8_t read_write_key_no,

 uint8_t change_key_no,

 uint8_t communication_settings,

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireCreateStdDataFile_PK(

 uint8_t *aes_key_ext,

 uint32_t aid,

 uint8_t file_id,

 uint32_t file_size,

 uint8_t read_key_no,

 uint8_t write_key_no,

 uint8_t read_write_key_no,

 uint8_t change_key_no,

 uint8_t communication_settings,

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireCreateStdDataFile_no_auth(

 uint32_t aid,

 uint8_t file_id,

 uint32_t file_size,

 uint8_t read_key_no,

 uint8_t write_key_no,

 uint8_t read_write_key_no,

 uint8_t change_key_no,

 uint8_t communication_settings,

 uint16_t *card_status,

 uint16_t *exec_time);

Parameters

aes_key_nr ordinal number of AES key in the reader

aes_key_ext pointer to 16 byte array containing the AES key

aid ID of application that contains the file

Digital Logic, www.d-logic.net Page 92

http://www.d-logic.net/

API revision: 2.1

file_id ID of file that will be created (0 – 31)

file_size file size in bytes

read_key_no key for reading

write_key_no key for writing

read_write_key_no key for reading and writing

change_key_no key for changing this setting

communication_settings variable that contains communication settings

card_status pointer to card error variable

exec_time function's execution time

uFR_int_DesfireDeleteFile

uFR_int_DesfireDeleteFile_PK

uFR_int_DesfireDeleteFile_no_auth

Function description
Function deactivates a file within currently selected application. Allocated memory blocks
associated with deleted file not set free. Only format card function can delete the memory blocks.
Is the application master key authentication is required, depend on the application master key
settings.

Digital Logic, www.d-logic.net Page 93

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS uFR_int_DesfireDeleteFile(uint8_t aes_key_nr,

 uint32_t aid,

 uint8_t file_id,

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireDeleteFile_PK(uint8_t *aes_key_ext,

 uint32_t aid,

 uint8_t file_id,

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireDeleteFile_no_auth(uint32_t aid,

 uint8_t file_id,

 uint16_t *card_status,

 uint16_t *exec_time);

Parameters

aes_key_nr ordinal number of AES key in the reader

aes_key_ext pointer to 16 byte array containing the AES key

aid ID of application that contains the file

file_id ID of file that will be deleted (0 – 31)

card_status pointer to card error variable

exec_time function's execution time

uFR_int_DesfireReadStdDataFile

uFR_int_DesfireReadStdDataFile_PK

uFR_int_DesfireReadStdDataFile_no_auth

Function description
Function allow to read data from Standard Data File, or from Backup Data File. Read command
requires a preceding authentication either with the key specified for Read or Read&Write access.

Digital Logic, www.d-logic.net Page 94

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS uFR_int_DesfireReadStdDataFile(uint8_t aes_key_nr,

 uint32_t aid,

 uint8_t aid_key_nr,

 uint8_t file_id,

 uint16_t offset,

 uint16_t data_length,

 uint8_t

communication_settings,

 uint8_t *data,

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireReadStdDataFile_PK(

 uint8_t *aes_key_ext,

 uint32_t aid,

 uint8_t aid_key_nr,

 uint8_t file_id,

 uint16_t offset,

 uint16_t data_length,

 uint8_t

communication_settings,

 uint8_t *data,

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireReadStdDataFile_no_auth(

 uint32_t aid,

 uint8_t aid_key_nr,

 uint8_t file_id,

 uint16_t offset,

 uint16_t data_length,

 uint8_t

communication_settings,

 uint8_t *data,

 uint16_t *card_status,

 uint16_t *exec_time);

Parameters

aes_key_nr ordinal number of AES key in the reader

aes_key_ext pointer to 16 byte array containing the AES key

aid ID of application that contains the file

aid_key_nr key number into application

Digital Logic, www.d-logic.net Page 95

http://www.d-logic.net/

API revision: 2.1

file_id ID of file (0 – 31)

offset start position for read operation within file

data_length number of data to be read

communication_settings value must be same as in file declaration

data pointer to data array

card_status pointer to card error variable

exec_time function's execution time

uFR_int_DesfireWriteStdDataFile

uFR_int_DesfireWriteStdDataFile_PK

uFR_int_DesfireWriteStdDataFile_no_auth

Function description
Function allow to write data to Standard Data File, or to Backup Data File. Write command
requires a preceding authentication either with the key specified for Write or Read&Write access.

Digital Logic, www.d-logic.net Page 96

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS uFR_int_DesfireWriteStdDataFile(

 uint8_t aes_key_nr,

 uint32_t aid,

 uint8_t aid_key_nr,

 uint8_t file_id,

 uint16_t offset,

 uint16_t data_length,

 uint8_t communication_settings,

 uint8_t *data,

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireWriteStdDataFile_PK(

 uint8_t *aes_key_ext,

 uint32_t aid,

 uint8_t aid_key_nr,

 uint8_t file_id,

 uint16_t offset,

 uint16_t data_length,

 uint8_t communication_settings,

 uint8_t *data,

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireWriteStdDataFile_no_auth(

 uint32_t aid,

 uint8_t aid_key_nr,

 uint8_t file_id,

 uint16_t offset,

 uint16_t data_length,

 uint8_t communication_settings,

 uint8_t *data,

 uint16_t *card_status,

 uint16_t *exec_time);

Parameters

aes_key_nr ordinal number of AES key in the reader

aes_key_ext pointer to 16 byte array containing the AES key

aid ID of application that contains the file

aid_key_nr key number into application

Digital Logic, www.d-logic.net Page 97

http://www.d-logic.net/

API revision: 2.1

file_id ID of file (0 – 31)

offset start position for read operation within file

data_length number of data to be read

communication_settings value must be same as in file declaration

data pointer to data array

card_status pointer to card error variable

exec_time function's execution time

DES_to_AES_key_type

Function description
Function allow to change the card master key type from DES to AES. Factory setting for DESFIRE
card master key is DES key type, and value is 0x0000000000000000. Because the reader uses
AES keys, you must change the type key on AES. New AES key is
0x00000000000000000000000000000000.

Function declaration (C language)
UFR_STATUS DES_to_AES_key_type(void);

AES_to_DES_key_type

Function description
Function allow to change the card master key type from AES to DES. Set master AES key before
use this function to 0x00000000000000000000000000000000. New DES key will be
0x0000000000000000 as in factory settings.

Function declaration (C language)
UFR_STATUS AES_to_DES_key_type(void);

Digital Logic, www.d-logic.net Page 98

http://www.d-logic.net/

API revision: 2.1

uFR_int_DesfireCreateValueFile

uFR_int_DesfireCreateValueFile_PK

uFR_int_DesfireCreateValueFile_no_auth

Function description
For uFR PLUS devices only.

Function allows to create file for the storage and manipulation of 32 bit signed integer values
within existing application on the card. Maximal number of files into application is 32. The file will
be created in the currently selected application. Is the application master key authentication is
required, depend on the application master key settings.

Communication settings define communication mode between reader and card. The
communication modes are:

- plain communication communication settings value is 0x00

- plain communication secured by MACing communication settings value is 0x01

- fully enciphered communication communication settings value is 0x11

Access rights for read, write, read&write and changing, references certain key within application's
keys (0 – 13). If value is 14, this means free access, independent of previous authentication. If
value is 15, this means deny access (for example if write access is 15 then the file type is read
only).

Digital Logic, www.d-logic.net Page 99

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS uFR_int_DesfireCreateValueFile(

 uint8_t aes_key_nr,

 uint32_t aid,

 uint8_t file_id,

 int32_t lower_limit,

 int32_t upper_limit,

 int32_t value,

 uint8_t limited_credit_enabled,

 uint8_t read_key_no,

 uint8_t write_key_no,

 uint8_t read_write_key_no,

 uint8_t change_key_no,

 uint8_t communication_settings,

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireCreateValueFile_PK(

 uint8_t *aes_key_ext,

 uint32_t aid,

 uint8_t file_id,

 uint8_t lower_limit,

 int32_t upper_limit,

 int32_t value,

 uint8_t limited_credit_enabled,

 uint8_t read_key_no,

 uint8_t write_key_no,

 uint8_t read_write_key_no,

 uint8_t change_key_no,

 uint8_t communication_settings,

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireCreateValueFile_no_auth(

 uint32_t aid,

 uint8_t file_id,

 int32_t lower_limit,

 int32_t upper_limit,

 int32_t value,

 uint8_t limited_credit_enabled,

 uint8_t read_key_no,

 uint8_t write_key_no,

 uint8_t read_write_key_no,

 uint8_t change_key_no,

 uint8_t communication_settings,

 uint16_t *card_status,

 uint16_t *exec_time);

Parameters

Digital Logic, www.d-logic.net Page 100

http://www.d-logic.net/

API revision: 2.1

aes_key_nr ordinal number of AES key in the reader

aes_key_ext pointer to 16 byte array containing the AES key

aid ID of application that contains the file

file_id ID of file that will be created (0 – 31)

lower_limit lower limit which is valid for this file

upper_limit upper limit which is valid for this file

value initial value of the value file

limited_credit_enabled bit 0 – limited credit enabled (1 – yes, 0 – no)
bit 1 – free get value (1 – yes, 0 – no)

read_key_no key for get and debit value

write_key_no key for get, debit and limited credit value

read_write_key_no for get, debit, limited credit and credit value

change_key_no key for changing this setting

communication_settings variable that contains communication settings

card_status pointer to card error variable

exec_time function's execution time

Digital Logic, www.d-logic.net Page 101

http://www.d-logic.net/

API revision: 2.1

uFR_int_DesfireReadValueFile

uFR_int_DesfireReadValueFile_PK

uFR_int_DesfireReadValueFile_no_auth

Function description
For uFR PLUS devices only.

Function allow to read value from value files. Read command requires a preceding authentication
either with the key specified for Read or Read&Write access.

Function declaration (C language)
UFR_STATUS uFR_int_DesfireReadValueFile(

 uint8_t aes_key_nr,

 uint32_t aid,

 uint8_t aid_key_nr,

 uint8_t communication_settings,

 int32_t *value,

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireReadValueFile_PK(

 uint8_t *aes_key_ext,

 uint32_t aid,

 uint8_t aid_key_nr,

 uint8_t communication_settings,

 int32_t *value,

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireReadValueFile_no_auth(

 uint32_t aid,

 uint8_t aid_key_nr,

 uint8_t communication_settings,

 int32_t *value,

 uint16_t *card_status,

 uint16_t *exec_time);

Parameters

aes_key_nr ordinal number of AES key in the reader

aes_key_ext pointer to 16 byte array containing the AES key

aid ID of application that contains the file

Digital Logic, www.d-logic.net Page 102

http://www.d-logic.net/

API revision: 2.1

aid_key_nr key number into application

communication_settings value must be same as in file declaration

value pointer to value variable

card_status pointer to card error variable

exec_time function's execution time

uFR_int_DesfireIncreaseValueFile

uFR_int_DesfireIncreaseValueFile_PK

uFR_int_DesfireIncreaseValueFile_no_auth

Function description
For uFR PLUS devices only.

Function allows to increase a value stored in a value files. Credit command requires a preceding
authentication with the key specified for Read&Write access.

Digital Logic, www.d-logic.net Page 103

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS uFR_int_DesfireIncreaseValueFile(

 uint8_t aes_key_nr,

 uint32_t aid,

 uint8_t aid_key_nr,

 uint8_t communication_settings,

 int32_t value,

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireIncreaseValueFile_PK(

 uint8_t *aes_key_ext,

 uint32_t aid,

 uint8_t aid_key_nr,

 uint8_t communication_settings,

 int32_t value,

 uint16_t *card_status,

 uint16_t *exec_time);

FR_STATUS uFR_int_DesfireIncreaseValueFile_no_auth(

 uint32_t aid,

 uint8_t aid_key_nr,

 uint8_t communication_settings,

 int32_t value,

 uint16_t *card_status,

 uint16_t *exec_time);

Parameters

aes_key_nr ordinal number of AES key in the reader

aes_key_ext pointer to 16 byte array containing the AES key

aid ID of application that contains the file

aid_key_nr key number into application

communication_settings value must be same as in file declaration

value value (must be positive number)

card_status pointer to card error variable

exec_time function's execution time

Digital Logic, www.d-logic.net Page 104

http://www.d-logic.net/

API revision: 2.1

uFR_int_DesfireDecreaseValueFile

uFR_int_DesfireDecreaseValueFile_PK

uFR_int_DesfireDecreaseValueFile_no_auth

Function description
For uFR PLUS devices only

Function allow to decrease value from value files. Debit command requires a preceding
authentication with on of the keys specified for Read, Write or Read&Write access.

Function declaration (C language)
UFR_STATUS uFR_int_DesfireDecreaseValueFile(

 uint8_t aes_key_nr,

 uint32_t aid,

 uint8_t aid_key_nr,

 uint8_t communication_settings,

 int32_t value,

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireDecreaseValueFile_PK(

 uint8_t *aes_key_ext,

 uint32_t aid,

 uint8_t aid_key_nr,

 uint8_t communication_settings,

 int32_t value,

 uint16_t *card_status,

 uint16_t *exec_time);

UFR_STATUS uFR_int_DesfireDecreaseValueFile_no_auth(

 uint32_t aid,

 uint8_t aid_key_nr,

 uint8_t communication_settings,

 int32_t *value,

 uint16_t *card_status,

 uint16_t *exec_time);

Parameters

aes_key_nr ordinal number of AES key in the reader

aes_key_ext pointer to 16 byte array containing the AES key

Digital Logic, www.d-logic.net Page 105

http://www.d-logic.net/

API revision: 2.1

aid ID of application that contains the file

aid_key_nr key number into application

communication_settings value must be same as in file declaration

value value (must be positive number)

card_status pointer to card error variable

exec_time function's execution time

Originality checking

Some card chips supports originality checking mechanism using Elliptic Curve Digital Signature
Algorithm (ECDSA). Chip families that support originality checking mechanism are NTAG 21x and
Mifare Ultralight EV1. For details on originality checking, you must have an non-disclosure
agreement (NDA) with the manufacturer who will provide you with the relevant documentation. In
any case, the uFR API provides you with 2 functions that you can use for this purpose:

ReadECCSignature

Function description
This function returns ECC signature of the card chip UID. Card chip UID is signed using EC
private key known only to a manufacturer.

Function declaration (C language)
#define MAX_UID_LEN 10

#define ECC_SIG_LEN 32

UFR_STATUS ReadECCSignature(uint8_t lpucECCSignature[ECC_SIG_LEN],

uint8_t lpucUid[MAX_UID_LEN],

uint8_t *lpucUidLen,

uint8_t *lpucDlogicCardType);

Parameters

lpucECCSignature pointer to array which (in case of successfully executed operation) will
contain 32 bytes long ECDSA signature of the chip UID. Chip UID is signed
using EC private key known only to a manufacturer.

Digital Logic, www.d-logic.net Page 106

http://www.d-logic.net/

API revision: 2.1

lpucUid pointer to a chip UID (in case of successfully executed operation). Returned
here for convenience.

*lpucUidLen pointer to variable which will (in case of successfully executed operation)
receive true length of the returned UID. (Maximum UID length is 10 bytes
but there is three possible UID sizes: 4, 7 and 10).

*lpucDlogicCardType pointer to variable which will (in case of successfully executed operation)
receive DlogicCardType. Returned here for convenience. For
DlogicCardType uFR API uses the same constants as with
GetDlogicCardType() function (see Appendix: DLogic CardType
enumeration).

OriginalityCheck

Function description
This function depends on OpenSSL crypto library. Since OpenSSL crypto library is dynamically
linked during execution, the only prerequisite for a successful call to this function is that the
libeay32.dll is in the current folder (valid for Windows) and / or libcrypto.so is in the environment
path (e.g. LD_LIBRARY_PATH on Linux / macOS). OriginalityCheck() performs the check if
the chip on the card / tag is NXP genuine.

Function declaration (C language)
UFR_STATUS OriginalityCheck(const uint8_t *signature,

const uint8_t *uid,

uint8_t uid_len,

uint8_t DlogicCardType);

Parameters

*signature ECCSignature acquired by call to the ReadECCSignature() function.

*uid Card UID. Best if the card UID is acquired by previous call to the
ReadECCSignature() function.

uid_len Card UID length. Best if the card UID length is acquired by previous call to the
ReadECCSignature() function.

DlogicCardType Card type. Best if the DlogicCardType is acquired by previous call to the
ReadECCSignature() function.

Digital Logic, www.d-logic.net Page 107

http://www.d-logic.net/

API revision: 2.1

UFR_STATUS specific error codes that can be returned by this function:

UFR_NOT_NXP_GENUINE 0x0200 if the chip on the card/tag ISN’T NXP GENUINE

UFR_OPEN_SSL_DYNAMIC_LIB_FAILED 0x0201 in case of OpenSSL library error (e.g. wrong
OpenSSL version)

UFR_OPEN_SSL_DYNAMIC_LIB_NOT_FOUND 0x0202

in case there is no OpenSSL library (libeay32.dll on
Windows systems, libcrypto.so on Linux and
libcrypto.dylib on macOS) in current folder or
environment path

UFR_OK 0 if the chip on the card/tag IS NXP GENUINE

NFC Type 2 Tags counters
There are different types of counters implemented in different families of the NFC T2T chips.
Ultralight, NTAG 210 and NTAG 212 doesn’t have counters.

Ultralight C and NTAG 203 have one 16-bit one-way counter which can be managed using
BlockRead and BlockWrite API functions on the appropriate block address (for those two chips,
counter page address is 0x29.

Ultralight EV1 variants have three independent 24-bit one-way counters which can be managed
using ReadCounter() and IncrementCounter() API functions. Counters are mapped in a separate
address space.

NTAG 213, NTAG 215 and NTAG 216 have 24-bit NFC counter which is incremented on every
first valid occurrence of the READ or FAST-READ command (ISO 14443-3A proprietary
commands) after the tag is powered by an RF field. There is no another way to change value of
the 24-bit NFC counter and there is mechanism to enable it or disable it. This counter can be read
using ReadNFCCounter() API function if password authentication is not in use. API functions
ReadNFCCounterPwdAuth_RK() or ReadNFCCounterPwdAuth_PK() can be used to read NFC
counter if it’s protected with the password authentication. 24-bit NFC counter have counter
address 2 (counter is mapped in a separate address space) so ReadCounter(2, &value) call is
equivalent to a ReadNFCCounter(&value) if password authentication isn’t in use.

ReadCounter

Function description
This function is used to read one of the three 24-bit one-way counters in Ultralight EV1 chip family.
Those counters can’t be password protected. In the initial Ultralight EV1 chip state, the counter
values are set to 0.

Digital Logic, www.d-logic.net Page 108

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS ReadCounter(uint8_t counter_address, uint32_t *value);

Parameters

counter_address
Address of the target counter. Can be in range 0 to 2. Counters are mapped in
a separate address space.

*value
Pointer to a uint32_t which will contained counter value after successful
function execution. Since counters are 24-bit in length, most significant byte of
the *value will be always 0.

IncrementCounter

Function description
This function is used to increment one of the three 24-bit one-way counters in Ultralight EV1 chip
family. Those counters can’t be password protected. If the sum of the addressed counter value
and the increment value is higher than 0xFFFFFF, the tag replies with an error and does not
update the respective counter.

Function declaration (C language)
UFR_STATUS IncrementCounter(uint8_t counter_address, uint32_t

inc_value);

Parameters

counter_address
Address of the target counter. Can be in range 0 to 2. Counters are mapped in
a separate address space.

inc_value Increment value. Only the 3 least significant bytes are relevant.

ReadNFCCounter

Function description
This function is used to read 24-bit NFC counter in NTAG 213, NTAG 215 and NTAG 216 chips
without using password authentication. If access to NFC counter is configured to be password
protected, this function will return COUNTER_ERROR.

Digital Logic, www.d-logic.net Page 109

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS ReadNFCCounter(uint32_t *value);

Parameter

*value
Pointer to a uint32_t which will contained counter value after successful function
execution. Since counter is 24-bit in length, most significant byte of the *value will
be always 0.

ReadNFCCounterPwdAuth_RK

Function description
This function is used to read 24-bit NFC counter in NTAG 213, NTAG 215 and NTAG 216 chips
using “reader key password authentication”. If access to NFC counter is configured to be
password protected and PWD-PACK pair stored as a 6-byte key in uFR reader disagrees with
PWD-PACK pair configured in tag, this function will return UFR_AUTH_ERROR. If access to NFC
counter isn’t configured to be password protected, this function will return UFR_AUTH_ERROR.

Function declaration (C language)
UFR_STATUS ReadNFCCounterPwdAuth_RK(uint32_t *value,

 uint8_t reader_key_index);

Parameters

*value
Pointer to a uint32_t which will contained counter value after successful
function execution. Since counter is 24-bit in length, most significant byte of
the *value will be always 0.

reader_key_index
Index of the 6-byte key (PWD-PACK pair for this type of NFC tags) stored in
the uFR reader. Can be in range 0 to 31.

ReadNFCCounterPwdAuth_PK

Function description
This function is used to read 24-bit NFC counter in NTAG 213, NTAG 215 and NTAG 216 chips
using “provided key password authentication”. If access to NFC counter is configured to be
password protected and PWD-PACK pair sent as a 6-byte provided key disagrees with
PWD-PACK pair configured in tag, this function will return UFR_AUTH_ERROR. If access to NFC
counter isn’t configured to be password protected, this function will return UFR_AUTH_ERROR.

Digital Logic, www.d-logic.net Page 110

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS ReadNFCCounterPwdAuth_PK(uint32_t *value, const uint8_t

*key);

Parameters

*value
Pointer to a uint32_t which will contained counter value after successful function
execution. Since counter is 24-bit in length, most significant byte of the *value will
be always 0.

*key Pointer to an array contains provided 6-byte key (PWD-PACK pair for this type of
NFC tags) for password authentication.

Functions for the operating parameters of the reader setting

UfrSetBadSelectCardNrMax

Function description
The function allows you to set the number of unsuccessful card selections before it can be
considered that the card is not placed on the reader. Period between two card selections is
approximately 10ms. Default value of this parameter is 20 i.e. 200ms. This parameter can be set
in the range of 0 to 254.
This is useful for asynchronous card ID transmission, if parameter send_removed_enable in
function SetAsyncCardIdSendConfig is set. Then you can set a lower value of the number of
unsuccessful card selections, in order to send information to the card removed was faster.
A small value of this parameter may cause a false report that the card is not present, and
immediately thereafter true report that the card is present.

Function declaration (C language)
UFR_STATUS UfrSetBadSelectCardNrMax(uint8_t bad_select_nr_max);

Parameter

bad_select_nr_max number of unsuccessful card selections

 UfrGetBadSelectCardNrMax

Function description
The function returns value of maximal unsuccessful card selections, which is set in reader.

Digital Logic, www.d-logic.net Page 111

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS UfrGetBadSelectCardNrMax(uint8_t *bad_select_nr_max);

Parameter

bad_select_nr_max pointer to number of unsuccessful card selections

Functions for all blocks linear reading

Function description
Functions allow you to quickly read data from the card including the sector trailer blocks. These
functions are very similar to the functions for linear reading of users data space.

● LinearRowRead
● LinearRowRead_AKM1
● LinearRowRead_AKM2
● LinearRowRead_PK

Digital Logic, www.d-logic.net Page 112

http://www.d-logic.net/

API revision: 2.1

Functions declaration (C language):
UFR_STATUS LinearRowRead(uint8_t *aucData,

 uint16_t usLinearAddress,

 uint16_t usDataLength,

 uint16_t *lpusBytesReturned,

 uint8_t ucAuthMode,

 uint8_t ucReaderKeyIndex);

UFR_STATUS LinearRowRead_AKM1(uint8_t *aucData,

 uint16_t usLinearAddress,

 uint16_t usDataLength,

 uint16_t *lpusBytesReturned,

 uint8_t ucAuthMode);

UFR_STATUS LinearRowRead_AKM2(uint8_t *aucData,
 uint16_t usLinearAddress,
 uint16_t usDataLength,
 uint16_t *lpusBytesReturned,
 uint8_t ucAuthMode);

UFR_STATUS LinearRowRead_PK(uint8_t *aucData,

 uint16_t usLinearAddress,

 uint16_t usDataLength,

 uint16_t *lpusBytesReturned,

 uint8_t ucAuthMode,

 uint8_t *aucProvidedKey);

Parameters

aucData Pointer to the sequence of bytes where read data will be stored

usLinearAddress Linear address on the card from which the data want to read

usDataLength Number of bytes for reading. For aucData a minimum usDataLength bytes
must be allocated before calling the function

lpusBytesReturned Pointer to "uint16_t" type variable, where the number of successfully read
bytes from the card is written. If the reading is fully managed this data is
equal to the usDataLength parameter. If there is an error reading some of
the blocks, the function returns all successfully read data in the aucData
before the errors occurrence and the number of successfully read bytes is
returned via this parameter

ucAuthMode This parameter defines whether to perform authentication with key A or key
B. It can have two values, namely: AUTHENT1A (0x60) or AUTHENT1B
(0x61)

ucReaderKeyIndex The default method of authentication (when the functions without a suffix is
used) performs the authenticity proving by using the selected key index from

Digital Logic, www.d-logic.net Page 113

http://www.d-logic.net/

API revision: 2.1

the reader. In the linear address mode, this applies to all sectors that are
read

aucProvidedKey Pointer to the six-byte string containing the key for authenticity proving in
the "Provided Key" method. _PK Suffix in the name of the function
indicates this method usage

FUNCTIONS FOR READER LOW POWER MODE CONTROL

UfrEnterSleepMode

Function description
Function allows enter to reader low power working mode. Reader is in sleep mode. RF field is
turned off. The reader is waiting for the command to return to normal working mode.

Function declaration (C language)
UFR_STATUS UfrEnterSleepMode(void);

UfrLeaveSleepMode

Function description
Function allows return from low power reader mode to normal working mode.
Function declaration (C language):
UFR_STATUS UfrLeaveSleepMode(void);

AutoSleepSet

Function description
This function permanently set auto-sleep functionality of the device. Valid seconds_wait range is
from 1 to 254. To permanently disable auto-sleep functionality use 0 or 0xFF for the seconds_wait
parameter.

Function declaration (C language)

unsigned long AutoSleepSet(uint8_t seconds_wait);

Parameter

seconds_wait device inactivity time before entering into sleep mode

Digital Logic, www.d-logic.net Page 114

http://www.d-logic.net/

API revision: 2.1

AutoSleepGet

Function description
This function uses to get auto-sleep functionality setup from the device. You have to send pointer
to already allocated variable of the uint8_t type. If auto-sleep functionality is disabled you will get 0
or 0xFF in the variable pointed by the *seconds_wait parameter.

Function declaration (C language)

unsigned long AutoSleepGet(uint8_t *seconds_wait);

Parameter

seconds_wait device inactivity time before entering into sleep mode

Functions for Reader NTAG Emulation Mode

WriteEmulationNdef

Function description
Function store a message record for NTAG emulation mode in to the reader. Parameters of the function
are: TNF, type of record, ID, payload.

Function declaration (C language)
UFR_STATUS WriteEmulationNdef(uint8_t tnf,
 uint8_t* type_record,

 uint8_t type_length,

 uint8_t* id,

 uint8_t id_length,

 uint8_t* payload,

 uint8_t payload_length);

Parameters

tnf TNF of the record

type_record pointer to the array containing record type

type_length length of the record type

id pointer to the array containing record ID

id_length length of the record ID

Digital Logic, www.d-logic.net Page 115

http://www.d-logic.net/

API revision: 2.1

payload pointer to the array containing record payload

payload_length length of the record payload

Possible error codes:

WRITE_VERIFICATION_ERROR = 0x70

MAX_SIZE_EXCEEDED = 0x10

WriteEmulationNdefWithAAR

Function description
This function do the same as WriteEmulationNdef() function with the addition of an AAR
embedded in to the NDEF message. AAR stands for “Android Application Record”. AAR is a
special type of NDEF record that is used by Google’s Android operating system to signify to an
NFC phone that an explicitly defined Android Application which should be used to handle an
emulated NFC tag. Android App record will be added as the 2nd NDEF record in the NDEF
message.

Function declaration (C language)
UFR_STATUS WriteEmulationNdefWithAAR(uint8_t tnf,
 uint8_t *type_record,
 uint8_t type_length,
 uint8_t *id,
 uint8_t id_length,
 uint8_t *payload,
 uint8_t payload_length,
 uint8_t *aar,
 uint8_t aar_length);

Parameters

tnf TNF of the record

type_record pointer to the array containing record type

type_length length of the record type

id pointer to the array containing record ID

id_length length of the record ID

Digital Logic, www.d-logic.net Page 116

http://www.d-logic.net/

API revision: 2.1

payload pointer to the array containing record payload

payload_length length of the record payload

aar pointer to the array containing AAR record

aar_length length of the AAR record

TagEmulationStart

Function description
Put the reader permanently in a NDEF tag emulation mode. Only way for a reader to exit from this mode is
to receive the TAG_EMULATION_STOP command (issued by calling TagEmulationStop() function).

In this mode, the reader can only answer to the commands issued by a following library functions:
TagEmulationStart(),

WriteEmulationNdef(),

TagEmulationStop(),

GetReaderSerialNumber(),

GetReaderSerialDescription(),

GetReaderHardwareVersion(),

GetReaderFirmwareVersion(),

GetBuildNumber()

Calls to the other functions in this mode returns following error code:

FORBIDDEN_IN_TAG_EMULATION_MODE = 0x90

Function declaration (C language)
UFR_STATUS TagEmulationStart(void);

Possible error codes:

WRITE_VERIFICATION_ERROR = 0x70

(command resulting in a direct write to a device non-volatile memory)

Digital Logic, www.d-logic.net Page 117

http://www.d-logic.net/

API revision: 2.1

TagEmulationStop

Function description

Allows the reader permanent exit from a NDEF tag emulation mode.
Function declaration (C language)
UFR_STATUS TagEmulationStop(void);

Possible error codes:
WRITE_VERIFICATION_ERROR = 0x70

(command resulting in a direct write to a device non-volatile memory)

Functions for setting Reader baud rates for ISO 14443 – 4A cards

SetSpeedPermanently

Function declaration (C language)
UFR_STATUS SetSpeedPermanently(uint8_t tx_speed, uint8_t rx_speed);

Parameters

tx_speed setup value for transmit speed

rx_speed setup value for receive speed

Valid speed setup values are:

Const Configured speed

0 106 kbps (default)

1 212 kbps

2 424 kbps

On some reader types maximum rx_speed is 212 kbps. If you try to set higher speed than is allowed,
reader firmware will automatically set the maximum possible speed.

Possible error codes:

WRITE_VERIFICATION_ERROR = 0x70

(command resulting in a direct write to a device non-volatile memory)

Digital Logic, www.d-logic.net Page 118

http://www.d-logic.net/

API revision: 2.1

GetSpeedParameters

Function declaration (C language)
UFR_STATUS GetSpeedParameters(uint8_t* tx_speed, uint8_t* rx_speed);

Parameters

tx_speed returns configured value for transmit speed

rx_speed returns configured value for receive speed

FUNCTIONS FOR DISPLAY CONTROL
SetDisplayData

Function description
Function enables sending data to the display. A string of data contains information about the
intensity of color in each cell of the display. Each cell has three LED (red, green and blue). For
each cell of the three bytes is necessary. The first byte indicates the intensity of the green color,
the second byte indicates the intensity of the red color, and the third byte indicates the intensity of
blue color. For example, if the display has 16 cells, an array contains 48 bytes. Value of intensity is
in range from 0 to 255.

Function declaration (C language)
UFR_STATUS SetDisplayData(uint8_t *display_data,

 uint8_t data_length);

Parameters

display_data pointer to data array

data_length number of data into array

SetSpeakerFrequency

Function description
Function sets the frequency of the speaker. The speaker is working on this frequency until a new
frequency setting. To stop the operation set frequency to zero.

Digital Logic, www.d-logic.net Page 119

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS SetSpeakerFrequency(uint16_t frequency);

Parameter

frequency frequency in Hz

FUNCTIONS TO USE THE SHARED RAM INTO DEVICE
Shared RAM is memory space on a device that is used for communication between computer and
Android device (phone, tablet) with an NFC reader. PC writes and read data from shared RAM via
USB port. Device with Android OS writes and read data from shared RAM via NFC.

EnterShareRamCommMode

Function description
Put reader permanently in the mode that use shared RAM. After execution of this function, must
be executed function TagEmulationStart.
Function declaration (C language)
UFR_STATUS EnterShareRamCommMode(void);

ExitShareRamCommMode

Function description
The permanent exit from mode that use shared RAM. After execution of this function, must be
executed function TagEmulationStop.
Function declaration (C language)
UFR_STATUS EnterShareRamCommMode(void);

WriteShareRam

Function description
Function allows writing data to the shared RAM.
Function declaration (C language)
UFR_STATUS WriteShareRam(uint8_t *ram_data,

uint8_t addr,

uint8_t data_len);

Parameters

ram_data pointer to data array

Digital Logic, www.d-logic.net Page 120

http://www.d-logic.net/

API revision: 2.1

addr address of first data in an array

data_len length of array. Address + data_len <= 184

ReadShareRam

Function description
Function allows read data from the shared RAM.
Function declaration (C language)
UFR_STATUS ReadShareRam(uint8_t *ram_data,

uint8_t addr,

uint8_t data_len);

Functions supporting Ad-Hoc emulation mode

This mode enables user controlled emulation from the user application. There is
“nfc-rfid-reader-sdk/ufr-examples-ad_hoc_emulation-c” console example written in C, which
demonstrate usage of this functions.

AdHocEmulationStart

Function description
Put uFR in emulation mode with ad-hoc emulation parameters (see. SetAdHocEmulationParams()
and GetAdHocEmulationParams() functions). uFR stays in ad-hoc emulation mode until
AdHocEmulationStop() is called or reader reset.

Function declaration (C language)
UFR_STATUS AdHocEmulationStart(void);

AdHocEmulationStop

Function description
Terminate uFR ad-hoc emulation mode.

Digital Logic, www.d-logic.net Page 121

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS AdHocEmulationStop(void);

GetExternalFieldState

Function description
Returns external field state when uFR is in ad-hoc emulation mode.

Function declaration (C language)
UFR_STATUS GetExternalFieldState(uint8_t *is_field_present);

is_field_present contains 0 if external field isn’t present or 1 if field is present.

GetAdHocEmulationParams

Function description
This function returns current ad-hoc emulation parameters. On uFR power on or reset ad-hoc
emulation parameters are set back to their default values.

Function declaration (C language)
UFR_STATUS GetAdHocEmulationParams(uint8_t *ThresholdMinLevel,

uint8_t *ThresholdCollLevel,

uint8_t *RFLevelAmp,

uint8_t *RxGain,

uint8_t *RFLevel);

Parameters

ThresholdMinLevel default value is 15. Could be in range from 0 to 15

ThresholdCollLevel default value is 7. Could be in range from 0 to 7

RFLevelAmp default value is 0. On uFR device should be 0 all the time. (1 for on, 0 for
off).

RxGain Could be in range from 0 to 7.

RFLevel Could be in range from 0 to 15

Digital Logic, www.d-logic.net Page 122

http://www.d-logic.net/

API revision: 2.1

SetAdHocEmulationParams

Function description
This command set ad-hoc emulation parameters. On uFR power on or reset ad-hoc emulation
parameters are set back to their default values.

Function declaration (C language)
UFR_STATUS SetAdHocEmulationParams(uint8_t ThresholdMinLevel,

uint8_t ThresholdCollLevel,

uint8_t RFLevelAmp,

uint8_t RxGain,

uint8_t RFLevel);

Parameters

ThresholdMinLevel default value is 15. Could be in range from 0 to 15

ThresholdCollLevel default value is 7. Could be in range from 0 to 7

RFLevelAmp default value is 0. On uFR device should be 0 all the time. (1 for on, 0 for
off).

RxGain Could be in range from 0 to 7.

RFLevel Could be in range from 0 to 15

CombinedModeEmulationStart

Function description
Puts the uFR reader into a permanently periodical switching from “NDEF tag emulation mode” to
“tag reader mode”. Only way for a reader to exit from this mode is to receive the
TAG_EMULATION_STOP command (issued by calling the TagEmulationStop() function).

Much better control of the NFC device in a uFR proximity range can be achieved using Ad-Hoc
emulation mode, described before.

Function declaration (C language)
UFR_STATUS CombinedModeEmulationStart(void);

Function takes no parameters.

Digital Logic, www.d-logic.net Page 123

http://www.d-logic.net/

API revision: 2.1

Digital Logic, www.d-logic.net Page 124

http://www.d-logic.net/

API revision: 2.1

Support for ISO14443-4 protocol

The protocol defines three fundamental types of blocks:

- I-block used to convey information for use by the application layer.

- R-block used to convey positive or negative acknowledgements. An R-block never contains an
INF field. The acknowledgement relates to the last received block.

- S-block used to exchange control information between the PCD and the PICC. Two different
types of S-blocks are defined:

1) Waiting time extension containing a 1 byte long INF field and

2) DESELECT containing no INF field.

Function declaration (C language)
UFR_STATUS i_block_trans_rcv_chain(uint8_t chaining,

 uint8_t timeout,

 uint8_t block_length,

 uint8_t *snd_data_array,

 uint8_t *rcv_length,

 uint8_t *rcv_data_array,

 uint8_t *rcv_chained,

 uint32_t *ufr_status);

Parameters

chaining 1 – chaining in use, 0 – no chaining

timeout timeout for card reply

block_length inf block length

snd_data_array pointer to array of data that will be send

rcv_length length of received data

rcv_data_array pointer to array of data that will be received

rcv_chained 1 received packet is chained, 0 received packet is not chained

ufr_status card operation status

Digital Logic, www.d-logic.net Page 125

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS r_block_transceive(uint8_t ack,

 uint8_t timeout,

 uint8_t *rcv_length,

 uint8_t *rcv_data_array,

 uint8_t *rcv_chained,

 uint32_t *ufr_status);

Parameters

ack 1 ACK, 0 NOT ACK

timeout timeout for card reply

rcv_length length of received data

rcv_data_array pointer to array of data that will be received

rcv_chained 1 received packet is chained, 0 received packet is not chained

ufr_status card operation status

Function declaration (C language)
UFR_STATUS s_block_deselect(uint8_t timeout);

Parameter

timeout timeout in [ms]

Digital Logic, www.d-logic.net Page 126

http://www.d-logic.net/

API revision: 2.1

Support for APDU commands in ISO 14443-4 tags

Some ISO 14443-4 tags supports the APDU message structure according to ISO/IEC 7816-4.

For more details you have to check the manual for the tags that you planning to use.

Function declarations used to support APDU message structure:

UFR_STATUS SetISO14443_4_Mode(void);

UFR_STATUS uFR_APDU_Transceive(uint8_t cls,

 uint8_t ins,

 uint8_t p0,

 uint8_t p1,

 uint8_t *data_out,

 uint8_t data_out_len,

 uint8_t *data_in,

 uint32_t max_data_in_len,

 uint32_t *response_len,

 uint8_t send_le,

 uint8_t *apdu_status);

UFR_STATUS s_block_deselect(uint8_t timeout);

Parameters

cls APDU CLA (class byte)

ins APDU command code (instruction byte)

p0 parameter byte

p1 parameter byte

data_out APDU command data field. Use NULL if data_out_len is 0

data_out_len number of bytes in the APDU command data field (Lc field)

data_in buffer for receiving APDU response. There should be allocated at least
(send_le + 2) bytes before function call.

max_data_in_le

n

size of the receiving buffer. If the APDU response exceeded size of
buffer,
then function returns error

response_len value of the Le fied if send_le is not 0. After successful execution

Digital Logic, www.d-logic.net Page 127

http://www.d-logic.net/

API revision: 2.1

location
pointed by response_len will contain number of bytes in the APDU
response.

send_le if this parameter is 0 then APDU Le field will not be sent. Otherwise Le
field
will be included in the APDU message. Value response_len pointed to,
before
function call will be value of the Le field.

apdu_status APDU error codes SW1 and SW2 in 2 bytes array

To send APDU message you must comply with the following procedure:

1. Call SetISO14443_4_Mode(). ISO 14443-4 tag in a field will be selected and RF field
polling will be stopped.

2. Call uFR_APDU_Transceive() as many times as you needed.
3. Call s_block_deselect() to deselect tag and restore RF field polling. This call is mandatory.

Fully uFR firmware support for APDU commands in ISO 14443-4 tags
This group of newly designed functions makes use of the uFR_APDU_Transceive() obsolete.
However, uFR_APDU_Transceive() function is still part of the uFCoder library for backward
compatibility.

New functions implemented in the uFCoder library are:

UFR_STATUS APDUHexStrTransceive(const char *c_apdu, char **r_apdu);

UFR_STATUS APDUPlainTransceive(const uint8_t *c_apdu,

 uint32_t c_apdu_len,

 uint8_t *r_apdu,

 uint32_t *r_apdu_len);

UFR_STATUS APDUTransceive(uint8_t cls,

 uint8_t ins,

 uint8_t p0,

 uint8_t p1,

 const uint8_t *data_out,

 uint32_t Nc,

 uint8_t *data_in,

 uint32_t *Ne,

 uint8_t send_le,

 uint8_t *apdu_status);

These functions are more responsive than obsolete uFR_APDU_Transceive(), because most of
the work if performed by a uFR firmware.

Digital Logic, www.d-logic.net Page 128

http://www.d-logic.net/

API revision: 2.1

UFR_STATUS APDUHexStrTransceive(const char *c_apdu, char **r_apdu);

Using this function, you can send C–APDU in the c_string (zero terminated) containing pairs of the
hexadecimal digits. Pairs of the hexadecimal digits can be delimited by any of the punctuation
characters or white space.

**r_apdu returns pointer to the c_string (zero terminated) containing pairs of the
hexadecimal digits without delimiters.

UFR_STATUS APDUPlainTransceive(const uint8_t *c_apdu,

 uint32_t c_apdu_len,

 uint8_t *r_apdu,

 uint32_t *r_apdu_len);

This is binary alternative function to the APDUHexStrTransceive(). C-APDU and R-APDU are
sent and receive in the form of the byte arrays. There is obvious need for a c_apdu_len and
*r_apdu_len parameters which represents length of the *c_apdu and *r_apdu byte arrays,
respectively.

The memory space on which *r_apdu points, have to be allocated before calling of the
APDUPlainTransceive(). Number of the bytes allocated have to correspond to the Ne bytes,
defined by the Le field in the C–APDU plus 2 bytes for SW1 and SW2.

UFR_STATUS APDUTransceive(uint8_t cls,

 uint8_t ins,

 uint8_t p0,

 uint8_t p1,

 const uint8_t *data_out,

 uint32_t Nc,

 uint8_t *data_in,

 uint32_t *Ne,

 uint8_t send_le,

 uint8_t *apdu_status);

This is “exploded binary” alternative function intended for support APDU commands in ISO
14443-4A tags. APDUTransceive() receives separated parameters which are an integral part of
the C–APDU. There is parameters cls, ins, p0, p1 of the uint8_t type.

N
c

defines number of bytes in the byte array *data_out point to. N
c

also defines L
c

field in the
C–APDU. Maximum value for the N

c
is 255. If N

c
> 0 then Lc = N

c , otherwise L
c

is omitted and

*data_out can be NULL.

send_le and *N
e

parameters defines L
c

field in the C–APDU. If send_le is 1 then L
e

field will be
included in the C–APDU. If send_le is 0 then L

e field will be omitted from the C–APDU.

If *N
e == 256 then L

e = 0, otherwise L
e = *N

e .

The memory space on which *data_in, have to be allocated before calling of the

Digital Logic, www.d-logic.net Page 129

http://www.d-logic.net/

API revision: 2.1

APDUPlainTransceive(). Number of the bytes allocated have to correspond to the *N
e

bytes,
defined by the L

e field in the C–APDU.

After successfully executed APDUTransceive(), *data_in will contain R-APDU data field
(body).

*apdu_status will contain R-APDU trailer (SW1 and SW2 APDU status bytes).

For older uFR firmware / deprecated / library backward compatibility

UFR_STATUS uFR_DESFIRE_Start(void);

UFR_STATUS uFR_DESFIRE_Stop(void);

UFR_STATUS uFR_APDU_Start(void); // Alias for uFR_DESFIRE_Start()

UFR_STATUS uFR_APDU_Stop(void); // Alias for uFR_DESFIRE_Stop()

UFR_STATUS uFR_i_block_transceive(uint8_t chaining, uint8_t timeout,
uint8_t block_length, uint8_t *snd_data_array, size_t *rcv_length,
uint8_t *rcv_data_array, uint32_t *ufr_status);

PKI infrastructure and digital signature support
Fully supported from library version 4.3.8 and firmware version 3.9.55

In our product range, we have special cards called “D-Logic JCApp” (working title), which contains
support for PKI infrastructure and digital signing. To invoke API functions that support these
features, the following conditions must be met:

1. “D-Logic JCApp” card must be in uFR reader field.

2. NFC tag must be in ISO 14443-4 mode. For entering ISO 14443-4 mode use
SetISO14443_4_Mode() function.

3. Now you can call any of the API functions with prefix “JCApp” as much as necessary.

4. At the end of JCApp session is necessary to call s_block_deselect() to deselect tag and
restore RF field polling.

To generate digital signature using “D-Logic JCApp” you need to have at least one of the private
keys stored in a card. Further, if your data for signing have more than 255 bytes, you have to split
them into the chunks and send them to a card using JCAppSignatureBegin() for the first chunk
and JCAppSignatureUpdate() for rest of the chunks. To generate signature, you have to call
JCAppSignatureEnd() after you have sent all of the data for signing. At last, to get signature, you
have to call JCAppGetSignature().

If your data for signing have 255 bytes or less, it is sufficient to call JCAppGenerateSignature()
only once and immediately after that call JCAppGetSignature() to get a signature.

Digital Logic, www.d-logic.net Page 130

http://www.d-logic.net/

API revision: 2.1

JCAppSelectByAid

Function description
Using this function you can select appropriate application on the card. AID should be “A0 F0 F1 F2
F3 00 01 00 01”. Before calling this function, NFC tag must be in ISO 14443-4 mode. For entering
ISO 14443-4 mode use SetISO14443_4_Mode() function.

Function declaration (C language)
UFR_STATUS JCAppSelectByAid(const uint8_t *aid,

 uint8_t aid_len,

 uint8_t selection_response[16]);

Parameters

aid Pointer to array containing AID (Aplication ID) i.e:
“\xA0\xF0\xF1\xF2\xF3\x00\x01\x00\x01”.

aid_len Length of the AID in bytes.

selection_response On Application successful selection, card returns 16 bytes. In current
version only the first of those bytes (i.e. byte with index 0) is relevant
and contains JCApp card type which is 0xA0 for actual revision.

JCAppPutPrivateKey

Function description
In JCApp cards you can put two types of asymmetric crypto keys. Those are RSA and ECDSA
private keys, three of each. Before you can use JCApp card for digital signing you have to put
appropriate private key in it. There is no way to read out private keys from the card.

Before calling this function, NFC tag must be in ISO 14443-4 mode and JCApp should be selected
using JCAppSelectByAid() with AID = “\xA0\xF0\xF1\xF2\xF3\x00\x01\x00\x01”.

Function declaration (C language)
UFR_STATUS JCAppPutPrivateKey(uint8_t key_type,

 uint8_t key_index,

 const uint8_t *key,

 uint16_t key_bit_len,

 const uint8_t *key_param,

 uint16_t key_parm_len);

Parameters

key_type 0 for RSA private key and 1 for ECDSA private key.

key_index For each of the card types there is 3 different private keys that you can set.

Digital Logic, www.d-logic.net Page 131

http://www.d-logic.net/

API revision: 2.1

Their indexes are from 0 to 2.

key Pointer to array containing key bytes.

key_bit_len Key length in bits.

key_param Reserved for future use (RFU). Use null for this parameter.

key_parm_len Reserved for future use (RFU). Use 0 for this parameter.

JCAppSignatureBegin

Function description
Before calling this function, NFC tag must be in ISO 14443-4 mode and JCApp should be selected
using JCAppSelectByAid() with AID = “\xA0\xF0\xF1\xF2\xF3\x00\x01\x00\x01”.

Function declaration (C language)
UFR_STATUS JCAppSignatureBegin(uint8_t cipher,

 uint8_t digest,

 uint8_t padding,

 uint8_t key_index,

 const uint8_t *chunk,

 uint16_t chunk_len,

 const uint8_t *alg_param,

 uint16_t alg_parm_len);

Parameters

cipher 0 for the RSA private key and 1 for the ECDSA.

digest 0 for none digest (not supported with ECDSA) and 1 for SHA1

padding 0 for none (not supported with RSA) and 1 for pads the digest according to
the PKCS#1 (v1.5) scheme.

key_index For each of the card types there is 3 different private keys that you can set.
Their indexes are from 0 to 2.

chunk Pointer to array containing first chunk of data.

chunk_len Length of the first chunk of data (max. 255).

alg_param Reserved for future use (RFU). Use null for this parameter.

alg_parm_len Reserved for future use (RFU). Use 0 for this parameter.

Digital Logic, www.d-logic.net Page 132

http://www.d-logic.net/

API revision: 2.1

JCAppSignatureUpdate

Function description
Before calling this function, NFC tag must be in ISO 14443-4 mode and JCApp should be selected
using JCAppSelectByAid() with AID = “\xA0\xF0\xF1\xF2\xF3\x00\x01\x00\x01”.

Function declaration (C language)
UFR_STATUS JCAppSignatureUpdate(const uint8_t *chunk,

 uint16_t chunk_len);

Parameters

chunk Pointer to an array containing current one of the remaining chunks of data.

chunk_len Length of the current one of the remaining chunks of data (max. 255).

JCAppSignatureEnd

Function description
Before calling this function, NFC tag must be in ISO 14443-4 mode and JCApp should be selected
using JCAppSelectByAid() with AID = “\xA0\xF0\xF1\xF2\xF3\x00\x01\x00\x01”.

Function declaration (C language)
UFR_STATUS JCAppSignatureEnd(uint16_t *sig_len);

Parameters

sig_len Pointer to a 16-bit value in which you will get length of the signature in case
of successful executed chain of function calls, described in introduction of
this topic.

JCAppGenerateSignature

Function description
This function virtually combines three successive calls of functions JCAppSignatureBegin(),
JCAppSignatureUpdate() and JCAppSignatureEnd() and can be used in case your data for signing
have 255 bytes or less.

Before calling this function, NFC tag must be in ISO 14443-4 mode and JCApp should be selected
using JCAppSelectByAid() with AID = “\xA0\xF0\xF1\xF2\xF3\x00\x01\x00\x01”.

Digital Logic, www.d-logic.net Page 133

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS JCAppGenerateSignature(uint8_t cipher,

 uint8_t digest,

 uint8_t padding,

 uint8_t key_index,

 const uint8_t *plain_data,

 uint16_t plain_data_len,

 uint16_t *sig_len,

 const uint8_t *alg_param,

 uint16_t alg_parm_len);

Parameters

cipher 0 for the RSA private key and 1 for the ECDSA.

digest 0 for none digest (not supported with ECDSA) and 1 for SHA1

padding 0 for none (not supported with RSA) and 1 for pads the digest according
to the PKCS#1 (v1.5) scheme.

key_index For each of the card types there is 3 different private keys that you can
set. Their indexes are from 0 to 2.

plain_data Pointer to array containing data for signing.

plain_data_len Length of the data for signing (max. 255).

sig_len Pointer to a 16-bit value in which you will get length of the signature in
case of successful execution.

alg_param Reserved for future use (RFU). Use null for this parameter.

alg_parm_len Reserved for future use (RFU). Use 0 for this parameter.

JCAppGetSignature

Function description
At last, to get signature, you have to call JCAppGetSignature().

Before calling this function, NFC tag must be in ISO 14443-4 mode and JCApp should be selected
using JCAppSelectByAid() with AID = “\xA0\xF0\xF1\xF2\xF3\x00\x01\x00\x01”.

Digital Logic, www.d-logic.net Page 134

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS JCAppGetSignature(uint8_t *sig,

 uint16_t sig_len);

Parameters

sig Pointer to an array of “sig_len” bytes length. Value of the “sig_len” you've
got as a parametar of the JCAppSignatureEnd() or
JCAppGenerateSignature() functions. You have to allocate those bytes
before calling this function.

sig_len Length of the allocated bytes in a sig array.

JCAppPutObj

Function description
Before calling this function, NFC tag must be in ISO 14443-4 mode and JCApp should be selected
using JCAppSelectByAid() with AID = “\xA0\xF0\xF1\xF2\xF3\x00\x01\x00\x01”.

Function declaration (C language)
UFR_STATUS JCAppPutObj(uint8_t obj_type,

 uint8_t obj_index,

 uint8_t *obj,

 int16_t obj_size,

 uint8_t *id,

 uint8_t id_size);

Parameters

obj_type 0 for certificate containing RSA public key, 1 for certificate containing
ECDSA public key and 2 for the CA (certificate authority).

obj_index For each of the certificates containing RSA or ECDSA public keys there is
3 different corresponding private keys that should be set before placing the
certificates themselves. Their indexes are from 0 to 2. For CA there is 12
memory slots so there indexes can be from 0 to 11.

obj Pointer to an array containing object (certificate).

obj_size Length of the object (certificate).

id Pointer to an array containing object id. Object id is a symbolic value and
have to be unique on the card.

id_size Length of the object id. Minimum object id length can be 1 and maximum
253.

Digital Logic, www.d-logic.net Page 135

http://www.d-logic.net/

API revision: 2.1

JCAppPutObjSubject

Function description
Before calling this function, NFC tag must be in ISO 14443-4 mode and JCApp should be selected
using JCAppSelectByAid() with AID = “\xA0\xF0\xF1\xF2\xF3\x00\x01\x00\x01”.

Function declaration (C language)
UFR_STATUS JCAppPutObjSubject(uint8_t obj_type,

 uint8_t obj_index,

 uint8_t *subject,

 uint8_t size);

Parameters

obj_type 0 for certificate containing RSA public key, 1 for certificate containing ECDSA
public key and 2 for the CA (certificate authority).

obj_index For each of the certificates containing RSA or ECDSA public keys there is 3
different corresponding private keys that should be set before placing the
certificates themselves. Their indexes are from 0 to 2. For CA there is 12
memory slots so there indexes can be from 0 to 11.

subject Pointer to an array containing subject. Subject is a symbolic value linked to a
appropriate certificate by the same obj_type and index.

size Length of the subject. Maximum subject length is 255.

JCAppInvalidateCert

Function description
Using this function you can delete certificate object from a card. This include subjects linked to a
certificate.

Before calling this function, NFC tag must be in ISO 14443-4 mode and JCApp should be selected
using JCAppSelectByAid() with AID = “\xA0\xF0\xF1\xF2\xF3\x00\x01\x00\x01”.

Function declaration (C language)
UFR_STATUS JCAppInvalidateCert(uint8_t obj_type,

 uint8_t obj_index);

Parameters

obj_type 0 for certificate containing RSA public key, 1 for certificate containing
ECDSA public key and 2 for the CA (certificate authority).

obj_index For each of the certificates containing RSA or ECDSA public keys there is
3 different corresponding private keys that should be set before placing the

Digital Logic, www.d-logic.net Page 136

http://www.d-logic.net/

API revision: 2.1

certificates themselves. Their indexes are from 0 to 2. For CA there is 12
memory slots so there indexes can be from 0 to 11.

JCAppGetObjId

Function description
This function you always have to call 2 times. Before first call you have to set parameter id to null
and you will get id_size of the obj_type at obj_index. Before second call you have to allocate an
array of the returned id_size bytes and pass that array using parameter id. Before second call,
*id_size should be set to a value of the exact bytes allocated.

Before calling this function, NFC tag must be in ISO 14443-4 mode and JCApp should be selected
using JCAppSelectByAid() with AID = “\xA0\xF0\xF1\xF2\xF3\x00\x01\x00\x01”.

Function declaration (C language)
UFR_STATUS JCAppGetObjId(uint8_t obj_type,

 uint8_t obj_index,

 uint8_t *id,

 uint16_t *id_size);

Parameters

obj_type 0 for certificate containing RSA public key, 1 for certificate containing
ECDSA public key and 2 for the CA (certificate authority).

obj_index For each of the certificates containing RSA or ECDSA public keys there is
3 different corresponding private keys that should be set before placing the
certificates themselves. Their indexes are from 0 to 2. For CA there is 12
memory slots so there indexes can be from 0 to 11.

id When id == NULL, function returns id_size.

id_size Before second call, *id_size should be set to a value of the exact bytes
allocated.

JCAppGetObjSubject

Function description
This function you always have to call 2 times. Before first call you have to set parameter subject
to null and you will get size of the obj_type at obj_index. Before second call you have to allocate
array of returned size bytes and pass that array using parameter subject. Before second call,
*size should be set to a value of the exact bytes allocated.

Before calling this function, NFC tag must be in ISO 14443-4 mode and JCApp should be selected

Digital Logic, www.d-logic.net Page 137

http://www.d-logic.net/

API revision: 2.1

using JCAppSelectByAid() with AID = “\xA0\xF0\xF1\xF2\xF3\x00\x01\x00\x01”.

Function declaration (C language)
UFR_STATUS JCAppGetObjSubject(uint8_t obj_type,

 uint8_t obj_index,

 uint8_t *subject,

 uint16_t *size);

Parameters

obj_type 0 for certificate containing RSA public key, 1 for certificate containing
ECDSA public key and 2 for the CA (certificate authority).

obj_index For each of the certificates containing RSA or ECDSA public keys there is
3 different corresponding private keys that should be set before placing the
certificates themselves. Their indexes are from 0 to 2. For CA there is 12
memory slots so there indexes can be from 0 to 11.

subject When subject == NULL, function returns size.

size Before second call, *size should be set to a value of the exact bytes
allocated.

JCAppGetObj

Function description
This function you always have to call 2 times. Before first call you have to set parameter obj to
null and you will get size of the obj_type at obj_index. Before second call you have to allocate
array of returned size bytes and pass that array using parameter obj. Before second call, *size
should be set to a value of the exact bytes allocated.

Before calling this function, NFC tag must be in ISO 14443-4 mode and JCApp should be selected
using JCAppSelectByAid() with AID = “\xA0\xF0\xF1\xF2\xF3\x00\x01\x00\x01”.

Function declaration (C language)
UFR_STATUS JCAppGetObj(uint8_t obj_type,

 uint8_t obj_index,

 uint8_t *obj,

 int16_t size);

Parameters

obj_type 0 for certificate containing RSA public key, 1 for certificate containing
ECDSA public key and 2 for the CA (certificate authority).

obj_index For each of the certificates containing RSA or ECDSA public keys there is
3 different corresponding private keys that should be set before placing the
certificates themselves. Their indexes are from 0 to 2. For CA there is 12

Digital Logic, www.d-logic.net Page 138

http://www.d-logic.net/

API revision: 2.1

memory slots so there indexes can be from 0 to 11.

obj When obj == NULL, function returns size.

size Before second call, *size should be set to a value of the exact bytes
allocated.

BASE HD UFR SUPPORT FUNCTIONS

UfrXrcLockOn

Function description
Electric strike switches when the function called. Pulse duration determined by function.

Function declaration (C language)
UFR_STATUS UfrXrcLockOn(uint8_t pulse_duration);

Parameter

pulse_duration pulse_duration is strike switch on period in ms

UfrXrcRelayState

Function description
Function switches relay.

Function declaration (C language)
UFR_STATUS UfrXrcRelayState(uint8_t state);

Parameter

state if the state is 1, then relay is switch on, and if state is 0, then relay is switch off

UfrXrcGetIoState

Function description
Function returns states of 3 IO pins.

Digital Logic, www.d-logic.net Page 139

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)
UFR_STATUS UfrXrcGetIoState(uint8_t *intercom,

 uint8_t *door,

 uint8_t *relay_state);

Parameters

intercom shows that there is voltage at the terminals for intercom connection, or not

 door shows that the door's magnetic switch opened or closed

relay_state is 1 if relay switch on, and 0 if relay switch off

Digital Logic, www.d-logic.net Page 140

http://www.d-logic.net/

API revision: 2.1

FUNCTIONS FOR RF ANALOG REGISTERS SETTING
These functions allow you to adjust the value of several registers on PN512. These are registers:
RFCfgReg, RxThresholdReg, GsNOnReg, GsNOffReg, CWGsPReg, ModGsPReg. This can be
useful if you want to increase the operation distance of card, or when it is necessary to reduce the
impact of environmental disturbances.

SetRfAnalogRegistersTypeA

SetRfAnalogRegistersTypeB

SetRfAnalogRegistersISO14443_212

SetRfAnalogRegistersISO14443_424

Function description
Functions allow adjusting values of registers RFCfgReg and RxThresholdReg. Registry setting is
applied to the appropriate type of communication with tag. There are ISO14443 Type A, ISO14443
TypeB, and ISO14443-4 on higher communication speeds (211 and 424 Kbps).

Digital Logic, www.d-logic.net Page 141

http://www.d-logic.net/

API revision: 2.1

Functions declaration (C language):
UFR_STATUS SetRfAnalogRegistersTypeA(uint8_t ThresholdMinLevel,

 uint8_t ThresholdCollLevel,

 uint8_t RFLevelAmp,

 uint8_t RxGain,

 uint8_t RFLevel);

UFR_STATUS SetRfAnalogRegistersTypeB(uint8_t ThresholdMinLevel,

 uint8_t ThresholdCollLevel,

 uint8_t RFLevelAmp,

 uint8_t RxGain,

 uint8_t RFLevel);

UFR_STATUS SetRfAnalogRegistersISO14443_212(

 uint8_t ThresholdMinLevel,

 uint8_t ThresholdCollLevel,

 uint8_t RFLevelAmp,

 uint8_t RxGain,

 uint8_t RFLevel);

UFR_STATUS SetRfAnalogRegistersISO14443_424(

 uint8_t ThresholdMinLevel,

 uint8_t ThresholdCollLevel,

 uint8_t RFLevelAmp,

 uint8_t RxGain,

 uint8_t RFLevel);

Parameters

ThresholdMinLevel value in range 0 - 15, part of RxThresholdReg

ThresholdCollLevel value in range 0 - 7, part of RxThresholdReg

RFLevelAmp 0 or 1, part of RFCfgReg

RxGain value in range 0 - 7, part of RFCfgReg

RFLevel value in range 0 - 15, part of RFCfgReg

Digital Logic, www.d-logic.net Page 142

http://www.d-logic.net/

API revision: 2.1

SetRfAnalogRegistersTypeADefault

SetRfAnalogRegistersTypeBDefault

SetRfAnalogRegistersISO14443_212Default

SetRfAnalogRegistersISO14443_424Default

Function description
The functions set the factory default settings of the registers RFCfgReg and RxThresholdReg.

Functions declaration (C language):
UFR_STATUS SetRfAnalogRegistersTypeADefault(void);

UFR_STATUS SetRfAnalogRegistersTypeBDefault(void);

UFR_STATUS SetRfAnalogRegistersISO14443_212Default(void);

UFR_STATUS SetRfAnalogRegistersISO14443_424Default(void);

GetRfAnalogRegistersTypeA

GetRfAnalogRegistersTypeB

GetRfAnalogRegistersISO14443_212

GetRfAnalogRegistersISO14443_424

Function description
The functions read the value of the registers RFCfgReg and RxThresholdReg.

Digital Logic, www.d-logic.net Page 143

http://www.d-logic.net/

API revision: 2.1

Functions declaration (C language):
UFR_STATUS GetRfAnalogRegistersTypeA(uint8_t *ThresholdMinLevel,

 uint8_t *ThresholdCollLevel,

 uint8_t *RFLevelAmp,

 uint8_t *RxGain,

 uint8_t *RFLevel);

UFR_STATUS GetRfAnalogRegistersTypeB(uint8_t *ThresholdMinLevel,

 uint8_t *ThresholdCollLevel,

 uint8_t *RFLevelAmp,

 uint8_t *RxGain,

 uint8_t *RFLevel);

UFR_STATUS GetRfAnalogRegistersISO14443_212(

 uint8_t *ThresholdMinLevel,

 uint8_t *ThresholdCollLevel,

 uint8_t *RFLevelAmp,

 uint8_t *RxGain,

 uint8_t *RFLevel);

UFR_STATUS GetRfAnalogRegistersISO14443_424(

 uint8_t *ThresholdMinLevel,

 uint8_t *ThresholdCollLevel,

 uint8_t *RFLevelAmp,

 uint8_t *RxGain,

 uint8_t *RFLevel);

Parameters

ThresholdMinLevel value in range 0 - 15, part of RxThresholdReg

ThresholdCollLevel value in range 0 - 7, part of RxThresholdReg

RFLevelAmp 0 or 1, part of RFCfgReg

RxGain value in range 0 - 7, part of RFCfgReg

RFLevel value in range 0 - 15, part of RFCfgReg

Digital Logic, www.d-logic.net Page 144

http://www.d-logic.net/

API revision: 2.1

SetRfAnalogRegistersTypeATrans

SetRfAnalogRegistersTypeBTrans

Function description
Functions allow adjusting values of registers RFCfgReg, RxThresholdReg, GsNOnReg,
GsNOffReg, CWGsPReg, ModGsPReg. Registry setting is applied to the appropriate type of
communication with tag. There are ISO14443 Type A, ISO14443 TypeB, and ISO14443-4 on
higher communication speeds (211 and 424 Kbps).

Functions declaration (C language):
UFR_STATUS SetRfAnalogRegistersTypeATrans(

 uint8_t ThresholdMinLevel,

 uint8_t ThresholdCollLevel,

 uint8_t RFLevelAmp,

 uint8_t RxGain,

 uint8_t RFLevel,

 uint8_t CWGsNOn,

 uint8_t ModGsNOn,

 uint8_t CWGsP,

 uint8_t CWGsNOff,

 uint8_t ModGsNOff);

UFR_STATUS SetRfAnalogRegistersTypeBTrans(

 uint8_t ThresholdMinLevel,

 uint8_t ThresholdCollLevel,

 uint8_t RFLevelAmp,

 uint8_t RxGain,

 uint8_t RFLevel,

 uint8_t CWGsNOn,

 uint8_t ModGsNOn,

 uint8_t CWGsP,

 uint8_t ModGsP);

Parameters

ThresholdMinLevel value in range 0 - 15, part of RxThresholdReg

ThresholdCollLevel value in range 0 - 7, part of RxThresholdReg

RFLevelAmp 0 or 1, part of RFCfgReg

RxGain value in range 0 - 7, part of RFCfgReg

RFLevel value in range 0 - 15, part of RFCfgReg

Digital Logic, www.d-logic.net Page 145

http://www.d-logic.net/

API revision: 2.1

CWGsNOn value in range 0 - 15, part of GsNOnReg

ModGsNOn value in range 0 - 15, part of GsNOnReg

CWGsP value of CWGsPReg (0 - 47)

CWGsNOff value in range 0 - 15, part of GsNOffReg

ModGsNOff value in range 0 - 15, part of GsNOffReg

ModGsP value of ModGsPReg (0 - 47)

GetRfAnalogRegistersTypeATrans

GetRfAnalogRegistersTypeBTrans

Function description
The functions read the value of the registers RFCfgReg, RxThresholdReg, GsNOnReg,
GsNOffReg, CWGsPReg, ModGsPReg.

Digital Logic, www.d-logic.net Page 146

http://www.d-logic.net/

API revision: 2.1

Functions declaration (C language):
UFR_STATUS GetRfAnalogRegistersTypeATrans(

 uint8_t *ThresholdMinLevel,

 uint8_t *ThresholdCollLevel,

 uint8_t *RFLevelAmp,

 uint8_t *RxGain,

 uint8_t *RFLevel,

 uint8_t *CWGsNOn,

 uint8_t *ModGsNOn,

 uint8_t *CWGsP,

 uint8_t *CWGsNOff,

 uint8_t *ModGsNOff);

UFR_STATUS GetRfAnalogRegistersTypeBTrans(

 uint8_t *ThresholdMinLevel,

 uint8_t *ThresholdCollLevel,

 uint8_t *RFLevelAmp,

 uint8_t *RxGain,

 uint8_t *RFLevel,

 uint8_t *CWGsNOn,

 uint8_t *ModGsNOn,

 uint8_t *CWGsP,

 uint8_t *ModGsP);

Parameters

ThresholdMinLevel value in range 0 - 15, part of RxThresholdReg

ThresholdCollLevel value in range 0 - 7, part of RxThresholdReg

RFLevelAmp 0 or 1, part of RFCfgReg

RxGain value in range 0 - 7, part of RFCfgReg

RFLevel value in range 0 - 15, part of RFCfgReg

CWGsNOn value in range 0 - 15, part of GsNOnReg

ModGsNOn value in range 0 - 15, part of GsNOnReg

CWGsP value of CWGsPReg (0 - 47)

CWGsNOff value in range 0 - 15, part of GsNOffReg

Digital Logic, www.d-logic.net Page 147

http://www.d-logic.net/

API revision: 2.1

ModGsNOff value in range 0 - 15, part of GsNOffReg

ModGsP value of ModGsPReg (0 - 47)

FUNCTIONS FOR DEVICE SIGNALIZATION SETTINGS

GreenLedBlinkingTurnOn

Function description
The function allows the blinking of the green diode independently of the user's signaling command

(default setting).

Function declaration (C language)
UFR_STATUS GreenLedBlinkingTurnOn(void);

GreenLedBlinkingTurnOff

Function description
The function prohibits the blinking of the green diode independently of the user's signaling
command. LED and sound signaling occurs only on the user command.

Function declaration (C language)
UFR_STATUS GreenLedBlinkingTurnOff(void);

FUNCTIONS FOR DISPLAY CONTROL
SetDisplayData

Function description
This feature working with LED RING 24 display module.
Function enables sending data to the display. A string of data contains information about the
intensity of color in each cell of the display. Each cell has three LED (red, green and blue). For
each cell of the three bytes is necessary. The first byte indicates the intensity of the green color,
the second byte indicates the intensity of the red color, and the third byte indicates the intensity of
blue color. For example, if the display has 16 cells, an array contains 48 bytes. Value of intensity is
in range from 0 to 255.

Digital Logic, www.d-logic.net Page 148

http://www.d-logic.net/

API revision: 2.1

Function declaration (C language)

UFR_STATUS SetDisplayData(uint8_t *display_data,

 uint8_t data_length);

Parameters

display_data pointer to data array

data_length number of data into array

SetDisplayIntensity

Function description
Function sets the intensity of light on the display. Value of intensity is in range 0 to 100.
Function declaration (C language)
UFR_STATUS SetDisplayIntensity(uint8_t intensity);

Parameter

intensity value of intensity (0 – 100)

GetDisplayIntensity

Function description
Function gets the intensity of light on the display.
Function declaration (C language)
UFR_STATUS GetDisplayIntensity(uint8_t *intensity);

Parameter

intensity pointer to intensity

Functions for transceive mode

For uFR PLUS devices only

In this mode, the data is entered via the serial port transmitted through the RF field to the card,
and the card response is transmitted to the serial port.

Digital Logic, www.d-logic.net Page 149

http://www.d-logic.net/

API revision: 2.1

card_transceive_mode_start

Function description

Function sets the parameters for transceive mode. If the hardware CRC option is used, then only
command bytes sent to card (hardware will add two bytes of CRC to the end of RF packet). If this
option did not use, then command bytes and two bytes of CRC sent to card (i.e. ISO14443 typeA
CRC). Timeout for card response in us sets.

Card is selected and waiting for commands.

Function declaration (C language)
UFR_STATUS card_transceive_mode_start(uint8_t tx_crc,

 uint8_t rx_crc,

 uint32_t rf_timeout,

 uint32_t uart_timeout);

Parameters

tx_crc hardware RF TX crc using (1 - yes, 0 - no)

rx_crc hardware RF RX crc using (1 - yes, 0 - no)

rf_timeout timeout for card response in us

uart_timeout timeout for UART response in ms

card_transceive_mode_stop

Function description

The function returns the reader to normal mode.

Function declaration (C language)
UFR_STATUS DL_API card_transceive_mode_stop(void);

uart_transceive

Function description

The function sends data through the serial port to the card.

Function declaration (C language)

Digital Logic, www.d-logic.net Page 150

http://www.d-logic.net/

API revision: 2.1

UFR_STATUS DL_API uart_transceive(uint8_t *send_data,

 uint8_t send_len,

 uint8_t *rcv_data,

 uint32_t bytes_to_receive,

 uint32_t *rcv_len);

Parameters

send_data pointer to data array for sending to card

send_len number of bytes for sending

rcv_data pointer to data array received from card

bytes_to_receive expected number of bytes received from card

rcv_len number of bytes received from card

Digital Logic, www.d-logic.net Page 151

http://www.d-logic.net/

API revision: 2.1

Appendix: ERROR CODES (DL_STATUS result)

UFR_OK 0x00
UFR_COMMUNICATION_ERROR 0x01
UFR_CHKSUM_ERROR 0x02
UFR_READING_ERROR 0x03
UFR_WRITING_ERROR 0x04
UFR_BUFFER_OVERFLOW 0x05
UFR_MAX_ADDRESS_EXCEEDED 0x06
UFR_MAX_KEY_INDEX_EXCEEDED 0x07
UFR_NO_CARD 0x08
UFR_COMMAND_NOT_SUPPORTED 0x09
UFR_FORBIDEN_DIRECT_WRITE_IN_SECTOR_TRAILER 0x0A
UFR_ADDRESSED_BLOCK_IS_NOT_SECTOR_TRAILER 0x0B
UFR_WRONG_ADDRESS_MODE 0x0C
UFR_WRONG_ACCESS_BITS_VALUES 0x0D
UFR_AUTH_ERROR 0x0E
UFR_PARAMETERS_ERROR 0x0F
UFR_MAX_SIZE_EXCEEDED 0x10
UFR_UNSUPPORTED_CARD_TYPE 0x11
UFR_COUNTER_ERROR 0x12
UFR_WRITE_VERIFICATION_ERROR 0x70
UFR_BUFFER_SIZE_EXCEEDED 0x71
UFR_VALUE_BLOCK_INVALID 0x72
UFR_VALUE_BLOCK_ADDR_INVALID 0x73
UFR_VALUE_BLOCK_MANIPULATION_ERROR 0x74
UFR_WRONG_UI_MODE 0x75
UFR_KEYS_LOCKED 0x76
UFR_KEYS_UNLOCKED 0x77
UFR_WRONG_PASSWORD 0x78
UFR_CAN_NOT_LOCK_DEVICE 0x79
UFR_CAN_NOT_UNLOCK_DEVICE 0x7A
UFR_DEVICE_EEPROM_BUSY 0x7B
UFR_RTC_SET_ERROR 0x7C
UFR_TAG_UNKNOWN 0x7D
UFR_COMMUNICATION_BREAK 0x50
UFR_NO_MEMORY_ERROR 0x51
UFR_CAN_NOT_OPEN_READER 0x52
UFR_READER_NOT_SUPPORTED 0x53
UFR_READER_OPENING_ERROR 0x54
UFR_READER_PORT_NOT_OPENED 0x55
UFR_CANT_CLOSE_READER_PORT 0x56
UFR_TIMEOUT_ERR 0x90
UFR_FT_STATUS_ERROR_1 0xA0
UFR_FT_STATUS_ERROR_2 0xA1

Digital Logic, www.d-logic.net Page 152

http://www.d-logic.net/

API revision: 2.1

UFR_FT_STATUS_ERROR_3 0xA2
UFR_FT_STATUS_ERROR_4 0xA3
UFR_FT_STATUS_ERROR_5 0xA4
UFR_FT_STATUS_ERROR_6 0xA5
UFR_FT_STATUS_ERROR_7 0xA6
UFR_FT_STATUS_ERROR_8 0xA7
UFR_FT_STATUS_ERROR_9 0xA8
UFR_WRONG_NDEF_CARD_FORMAT 0x80
UFR_NDEF_MESSAGE_NOT_FOUND 0x81
UFR_NDEF_UNSUPPORTED_CARD_TYPE 0x82
UFR_NDEF_CARD_FORMAT_ERROR 0x83
UFR_MAD_NOT_ENABLED 0x84
UFR_MAD_VERSION_NOT_SUPPORTED 0x85

multiple units - return from the functions with ReaderList_ prefix in name
UFR_DEVICE_WRONG_HANDLE 0x100
UFR_DEVICE_INDEX_OUT_OF_BOUND 0x101
UFR_DEVICE_ALREADY_OPENED 0x102
UFR_DEVICE_ALREADY_CLOSED 0x103
UFR_DEVICE_IS_NOT_CONNECTED 0x104

Originality Check Error Codes
UFR_NOT_NXP_GENUINE 0x200
UFR_OPEN_SSL_DYNAMIC_LIB_FAILED 0x201
UFR_OPEN_SSL_DYNAMIC_LIB_NOT_FOUND 0x202

UFR_NOT_IMPLEMENTED 0x1000
UFR_COMMAND_FAILED 0x1001

APDU Error Codes
UFR_APDU_JC_APP_NOT_SELECTED 0x6000
UFR_APDU_JC_APP_BUFF_EMPTY 0x6001
UFR_APDU_WRONG_SELECT_RESPONSE 0x6002
UFR_APDU_WRONG_KEY_TYPE 0x6003
UFR_APDU_WRONG_KEY_SIZE 0x6004
UFR_APDU_WRONG_KEY_PARAMS 0x6005
UFR_APDU_WRONG_ALGORITHM 0x6006
UFR_APDU_PLAIN_TEXT_SIZE_EXCEEDED 0x6007
UFR_APDU_UNSUPPORTED_KEY_SIZE 0x6008
UFR_APDU_UNSUPPORTED_ALGORITHMS 0x6009
UFR_APDU_RECORD_NOT_FOUND 0x600A

UFR_APDU_SW_TAG 0x0A0000

Digital Logic, www.d-logic.net Page 153

http://www.d-logic.net/

API revision: 2.1

DESFIRE Card Status Error Codes

READER_ERROR 2999

NO_CARD_DETECTED 3000

CARD_OPERATION_OK 3001

WRONG_KEY_TYPE 3002

KEY_AUTH_ERROR 3003

CARD_CRYPTO_ERROR 3004

READER_CARD_COMM_ERROR 3005

PC_READER_COMM_ERROR 3006

COMMIT_TRANSACTION_NO_REPLY 3007

COMMIT_TRANSACTION_ERROR 3008

DESFIRE_CARD_NO_CHANGES 0x0C0C

DESFIRE_CARD_OUT_OF_EEPROM_ERROR 0x0C0E

DESFIRE_CARD_ILLEGAL_COMMAND_CODE 0x0C1C

DESFIRE_CARD_INTEGRITY_ERROR 0x0C1E

DESFIRE_CARD_NO_SUCH_KEY 0x0C40

DESFIRE_CARD_LENGTH_ERROR 0x0C7E

DESFIRE_CARD_PERMISSION_DENIED 0x0C9D

DESFIRE_CARD_PARAMETER_ERROR 0x0C9E

DESFIRE_CARD_APPLICATION_NOT_FOUND 0x0CA0

DESFIRE_CARD_APPL_INTEGRITY_ERROR 0x0CA1

DESFIRE_CARD_AUTHENTICATION_ERROR 0x0CAE

DESFIRE_CARD_ADDITIONAL_FRAME 0x0CAF

DESFIRE_CARD_BOUNDARY_ERROR 0x0CBE

DESFIRE_CARD_PICC_INTEGRITY_ERROR 0x0CC1

Digital Logic, www.d-logic.net Page 154

http://www.d-logic.net/

API revision: 2.1

DESFIRE_CARD_COMMAND_ABORTED 0x0CCA

DESFIRE_CARD_PICC_DISABLED_ERROR 0x0CCD

DESFIRE_CARD_COUNT_ERROR 0x0CCE

DESFIRE_CARD_DUPLICATE_ERROR 0x0CDE

DESFIRE_CARD_EEPROM_ERROR_DES 0x0CEE

DESFIRE_CARD_FILE_NOT_FOUND 0x0CF0

DESFIRE_CARD_FILE_INTEGRITY_ERROR 0x0CF1

Digital Logic, www.d-logic.net Page 155

http://www.d-logic.net/

API revision: 2.1

Appendix: DLogic CardType enumeration
TAG_UNKNOWN 0x00
 DL_MIFARE_ULTRALIGHT 0x01
 DL_MIFARE_ULTRALIGHT_EV1_11 0x02
 DL_MIFARE_ULTRALIGHT_EV1_21 0x03
 DL_MIFARE_ULTRALIGHT_C 0x04
 DL_NTAG_203 0x05
 DL_NTAG_210 0x06
 DL_NTAG_212 0x07
 DL_NTAG_213 0x08
 DL_NTAG_215 0x09
 DL_NTAG_216 0x0A
 DL_MIKRON_MIK640D 0x0B
 NFC_T2T_GENERIC 0x0C

 DL_MIFARE_MINI 0x20
DL_MIFARE_CLASSIC_1K 0x21
 DL_MIFARE_CLASSIC_4K 0x22
 DL_MIFARE_PLUS_S_2K 0x23
 DL_MIFARE_PLUS_S_4K 0x24
 DL_MIFARE_PLUS_X_2K 0x25
 DL_MIFARE_PLUS_X_4K 0x26
 DL_MIFARE_DESFIRE 0x27
 DL_MIFARE_DESFIRE_EV1_2K 0x28
 DL_MIFARE_DESFIRE_EV1_4K 0x29
 DL_MIFARE_DESFIRE_EV1_8K 0x2A
DL_MIFARE_DESFIRE_EV2_2K 0x2B
DL_MIFARE_DESFIRE_EV2_4K 0x2C
DL_MIFARE_DESFIRE_EV2_8K 0x2D

DL_UNKNOWN_ISO_14443_4 0x40
DL_GENERIC_ISO14443_4 0x40
DL_GENERIC_ISO14443_TYPE_B 0x41

DL_IMEI_UID 0x80

Digital Logic, www.d-logic.net Page 156

http://www.d-logic.net/

API revision: 2.1

Appendix: DLogic reader type enumeration
Value Reader name

0xD1150021 µFR Classic

0xD2150021 µFR Advance

0xD3150021 µFR PRO

0xD1180022 µFR Nano Classic

0xD3180022 µFR Nano PRO

0xD1190222 µFR Nano Classic RS232

0xD3190222 µFR Nano PRO RS232

0xD11A0022 µFR Classic Card Size

0xD21A0022 µFR Advance Card Size

0xD31A0022 µFR PRO Card Size

0xD11A0222 µFR Classic Card Size RS232

0xD21A0222 µFR Advance Card Size RS232

0xD31A0222 µFR PRO Card Size RS232

0xD11B0022 µFR Classic Card Size RF-AMP

0xD21B0022 µFR Advance Card Size RF-AMP

0xD31B0022 µFR PRO Card Size RF-AMP

0xD11B0222 µFR Classic Card Size RS232 RF-AMP

0xD21B0222 µFR Advance Card Size RS232 RF-AMP

0xD31B0222 µFR PRO Card Size RS232 RF-AMP

Digital Logic, www.d-logic.net Page 157

http://www.d-logic.net/

API revision: 2.1

Appendix: FTDI troubleshooting
On Windows systems, it is pretty straightforward with .msi installer executable.
On Linux platforms, few more things must be provided:
- Appropriate user permissions on FTDI and uFCoder libraries
- “ftdi_sio” and helper module “usbserial” must be removed/unloaded for proper
functioning. Each time device is plugged in, Linux kernel loads appropriate module. So, each time
device is plugged, you must issue following command in CLI:
sudo rmmod ftdi_sio usbserial

- This can be painful, so good practice is to blacklist these two modules in
“etc/modprobe.d/” directory. Create new file called “ftdi.conf” and add following line :

 #disable auto load FTDI modules - D-LOGIC
blacklist ftdi_sio

blacklist usbserial

On macOS, it is good enough to follow FTDI’s guidelines for proper driver installation.
Update: since Mac OS version 10.11 El Capitan, macOS introduces SIP (System Integration
Protection) which does not allow user to write into system directories like ‘usr/lib’ and similar,
which makes a lot of problems in implementation. For that purpose, ‘libuFCoder.dylib’ library
embeds FTDI’s library too, so there is no need for installation of FTDI’s drivers.
Previous macOS versions works fine with FTDI’s D2XX drivers.
D2XX drivers links: http://www.ftdichip.com/Drivers/D2XX.htm
Direct link to current drivers: http://www.ftdichip.com/Drivers/D2XX/MacOSX/D2XX1.2.2.dmg

Install instructions are located in the archive. You need to install/copy needed drivers.

Other kernel extensions problems:
To successfully open the FTDI port, it is necessary to check if another FTDI module (kernel
extension) is loaded, and if it is, it needs to be deactivated.

Procedure:

1. plug-in FTDI device (uFReader) and wait a few seconds
2. open console
3. you can check if device is detected:

 $ sudo dmesg
 FTDIUSBSerialDriver: 0 **4036001** start - ok

 4. check if kernel extension is loaded for FTDI:
 $ kextstat | grep -i ftdi

Digital Logic, www.d-logic.net Page 158

http://www.d-logic.net/

API revision: 2.1

 94 0 0xffffff7f82041000 0x8000 0x8000

com.FTDI.driver.FTDIUSBSerialDriver (2.2.18) <70 34 5 4 3 1>

 5. you need to deactivate it - eject it from memory
sudo kextunload /System/Library/Extensions/FTDIUSBSerialDriver.kext

Remark - with the system OS X 10.11 (El Capitan)
After the module is removed, it returns again. It is necessary to download the Helper from FTDI
site and to run it on the machine, and after that restart is required.
Information from site:
If using a device with standard FTDI vendor and product identiers, install D2xxHelper to prevent
OS X 10.11 (El Capitan) claiming the device as a serial port (locking out D2XX programs).
This is how to load driver on El Capitan:
$ kextstat | grep -i ftd 146 0 0xffffff7f82d99000 0x7000 0x7000

com.apple.driver.AppleUSBFTDI (5.0.0) D853EEF2-435D-370E-AFE3-DE49CA29DF47 <123 38 5 4 3

1>

$ sudo kextunload /System/Library/Extensions/AppleUSBFTDI.kext

After this, FTDI devices are ready to work with FTD2XX libraries.

Appendix: Change log

Date Description API
revision

refers to the
lib version /

firmware ver.

2018-05-29 PKI infrastructure and digital signature support 2.1 4.3.8 / 3.9.55

Digital Logic, www.d-logic.net Page 159

http://www.d-logic.net/

